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ABSTRACT

Modern phased array radar uses multifunction subarray antennas in a distributed fashion.
Distributed subarrays (DSA) have the advantages of more efficient scheduling of track
and search functions, rapid steering capability, decreased complexity in digital
beamforming and better angular resolution. However, one disadvantage of the DSA are
the extra grating lobes due to large subarray spacing which can cause ambiguities in
angle measurements and excess background clutter. A possible approach to suppress the
grating lobes is to design separate transmit and receive subarray antennas that have

different radiation patterns.

The purpose of this research was to develop a program based on the principle of
pattern multiplication to synthesize and access the two-way antenna pattern for DSAs.
The program, written in MATLAB, allows the user to study the two-way antenna pattern
for different subarray architectures. The program was able to synthesize the pattern for
isotropic elements, short dipoles and half-wave dipoles in a planar array above a ground
plane. A simulation tool was also developed to map the grating lobe and null locations of
the antenna patterns in direction cosine space. Several DSA configurations were
examined, and the results showed that undesired grating lobes can be suppressed by

subarray nulls.
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EXECUTIVE SUMMARY

Modern phased array radar uses multifunction subarray antennas in a distributed fashion.
Distributed subarrays (DSA) have the advantages of more efficient scheduling of track
and search functions, rapid steering capability, decreased complexity in digital
beamforming and better angular resolution. One disadvantage of the DSA are the extra
grating lobes due to large subarray spacing which can cause ambiguities in angle
measurements and excess background clutter. A possible approach to suppress the grating
lobes is to design separate transmit and receive subarray antennas that have different

radiation patterns.

The primary objective of this research was to develop a simulation tool to
investigate the behavior and effectiveness in suppressing undesired grating lobes using
the approach of two-way antenna pattern in DSA design. The fundamental array theory
and principle of pattern multiplication, which formed the basis of the simulation tool
design, were discussed. With the principle of pattern multiplication, grating lobes can be
suppressed by placement of subarray nulls at grating lobe locations. A simple program
was developed in MATLAB to allow the user to visualize the placement of grating lobes
and nulls in direction cosine space for a DSA configuration in the visible region. A
simulation tool with graphical user interface (GUI) was developed and implemented in
MATLAB to perform the two-way antenna pattern and power gain calculations for user
configured DSAs. The program is capable of performing two-way pattern and power gain
calculations for linear or planar DSAs consisting of isotropic elements, half-wave dipoles
or short dipoles above a ground plane. The program is able to present the simulation

results in the & pattern cut, ¢ pattern cut, or as a three-dimensional mesh plot in

direction cosine space. The program GUI provides a convenient way for the user to tweak

the design configurations very quickly by changing the DSA parameters.

The effectiveness of the two-way pattern multiplication approach to suppress
undesired grating lobes by placement of subarray nulls at the grating lobe locations was
demonstrated using the simulation tool. For a transmit DSA with subarray spacing of five

wavelengths and uniform amplitude illumination, a sidelobe level (SLL) of —25.5 dB was
Xvil



achieved. Using the simulation tool, we demonstrated that low SLL and narrow half-
power beamwidth (HPBW) of the two-way antenna pattern can be achieved using thinned
transmit and receive arrays consisting of widely-spaced subarrays with non-coincident
grating lobe locations. The simulation results showed that a peak SLL of —49.7 dB and
HPBW of 0.9° were obtained for broadside illumination. Simulation was also carried out
to examine the effects on the two-way pattern when different scan angles were applied.
The simulation results showed that beam broadening was evident and peak SLL was
increased for the two-way antenna pattern when large scan angles were applied to the
main beams of the transmit and receive arrays. It was assumed that the main beams of the

transmit and receive arrays were scanned to the same angle.

The simulation tool that was successfully developed for this research will serve as
a useful tool for both students and electromagnetic professionals to determine and study
the two-way pattern and power gain of different transmit/receive DSA designs. The
simulation tool has also demonstrated the advantages of using separate transmit and
receive antenna patterns to suppress undesired grating lobes and achieve narrow two-way

beamwidth using fewer antenna elements.

xviil
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l. INTRODUCTION

A BACKGROUND

A phased array is a directive antenna made up of a number of individual antennas,
or radiating elements [1]. These individual antennas are geometrically arranged and
excited by relatively phased currents to produce desired radiation patterns. Since the
1980s, phased arrays have gained wide use in military radar and communication
applications. The Aegis ships in the US Navy use phased arrays for the AN/SPY-1
multifunction radar (MFR) [2]. The phased array for the AN/SPY-1 radar is shown in
Figure 1.

Figure 1. AN/SPY-1 phased array radar (From [3]).

With the advent of stealth technology to reduce the radar cross section (RCS) of
modern naval fighting ships, platform real estate has become a precious commodity. This
leaves limited areas on the ship structure for large antenna arrays. This is a challenge for
design of antenna apertures for shipboard radar systems. One design approach is to use
multi-function subarray antennas in a distributed fashion. A distributed subarray (DSA)

consists of multiple subarrays of antenna elements physically distributed over a platform



to form a long baseline, very thinned array for accurate angular location of targets [4].
Synthetic apertures can be generated using coherent processing to produce optimized
patterns for specific radar applications. DSAs have the advantages of more efficient
scheduling of track and search functions, rapid steering capability, decreased complexity
in digital beamforming, and better angular resolution. One disadvantage of the DSA is
the extra grating lobes that are introduced due to large subarray spacing of multiple
wavelengths. Grating lobes, a form of undesired aliasing, exist when more than one
period of the array factor appears in the visible region. Grating lobes are undesirable
because they have the same magnitude as the main beam, which can cause ambiguities in

angle measurements and excess background clutter.

A possible approach to suppress the grating lobes is to design separate transmit
and receive subarray antennas. In radar systems, the received power depends on the
product of transmit and receive antenna gains. In theory, the undesired grating lobes can
be suppressed by combining transmit and receive antenna pairs that have different
radiation patterns. The separate receive antenna can be designed with nulls in the
direction of the transmit antenna array’s grating lobes in order to cancel or reduce its

effect by taking advantage of the two-way antenna gain in the radar range equation.

The major advantages of using separate transmit and receive antenna patterns are

the following:

o A narrow two-way beamwidth can be achieved using fewer antenna
elements.

o An increase in transmit/receive isolation can be achieved.

o There is more flexibility in the physical placement of the antennas.

o There is an added dimension of beamforming for digital phased arrays.

o There is a possibility of clutter reduction using pattern design.



B. PREVIOUS RESEARCH

The concept of distributed array radar (DAR) and factors involving two-way
effective gain patterns for DAR arrays are discussed in [4]. The study described a
convolution approach to evaluate DAR resolution patterns using different transmit and
receive array apertures. Lin [5] described methods of improving angular resolution of
shipboard radar using DSAs. His research also proposed using two-way patterns to

suppress grating lobes in widely spaced subarrays.
C. SCOPE OF RESEARCH

The objective of this research is to design a simulation tool to investigate the
behavior and effectiveness in suppressing undesired grating lobes by using the approach
of two-way antenna pattern in DSA design. The element factor for short dipoles and half-
wave dipoles above a ground plane is included. The array factor and principle of pattern
multiplication are employed to reduce the computational burden. A program is developed
using MATLAB to synthesize and evaluate the two-way antenna pattern for planar
phased arrays. Several DSA configurations are examined, and the synthesis results

presented and discussed.
D. ORGANIZATION OF THESIS

The overall thesis report consists of five chapters. The scope of the thesis and
background, which includes a brief introduction of distributed phased arrays, is covered

in Chapter 1.

The fundamental theory of phased arrays is discussed in Chapter II. The scanning
pattern for arrays with elements above a ground plane is presented in this chapter. The
array factor, ground plane factor, and element factor are introduced. In addition, the

effects of grating lobes due to periodic variations in the array are explained.

The principles of digital array beamforming, directivity, gain, and radar range
equations for DSAs are introduced in Chapter III. The approach to suppress undesired

grating lobes using the principle of pattern multiplication is also discussed.



The program developed and implemented in MATLAB for simulating the two-
way antenna pattern for DSAs is described in Chapter IV. The simulation results

conducted for several DSA configurations are presented and analyzed, as well.

Finally, the summary and recommendations for future research and study are

provided in Chapter V.

The MATLAB codes for the program developed for this research are provided in
the Appendix.



II.  ARRAY PATTERN THEORY

In this chapter, the fundamental theory of array antennas for a two-dimensional
array above a ground plane is presented. The array pattern, array factor, element factor,
and ground plane factor are introduced. Grating lobes in DSA design and their effects are

also described.

A. ARRAY ANTENNAS

An array can be considered as a collection of identical radiating elements that are
excited to achieve some desired radiating pattern. A linear array consists of antenna
elements arranged in a single dimension (straight line). A linear array of dipoles is shown
in Figure 2. A standard spherical polar coordinate system is used, with the elements along

the X axis. Broadside is @=0° and endfire is & = +90°.

7 To far-field observation point at (r,8,¢4 = 0)

Figure 2.  Linear array of dipoles (After [6]).

B. TWO-DIMENSIONAL ARRAYS WITH GROUND PLANES

A two-dimensional (2D) or planar array consists of antenna elements arranged on
a two-dimensional plane. The theories and formulas for the development of the
MATLAB program to synthesize the two-way antenna pattern for planar DSAs are

discussed in this section. The material can be found in [7].



1. Array Factor

The array factor (AF) is a function of the array geometry and relative excitations
of the array elements. Consider a planar array of point sources laid out on a rectangular

lattice in the x-y plane as shown in Figure 3.

Figure 3.  Planar array centered at the origin (From [7]).

The pattern angles @ and ¢ for the planar array oriented in the x-y plane are

defined by the coordinate system shown in Figure 4.

~ A

Planar array in
x-y plane

Figure 4.  Array orientation and pattern angles € and ¢ (After [8]).
6



If the array is centered at the origin, then the element locations can be written as

2n—(Ny +1)

Xq = . dy, Nn=L...,Ny (D
and
2m—(Ny +1)
ym:fdy, m=1,...,Ny )

where dy and dy are the element spacings and N, and Ny are the number of elements
along the X and y axes, respectively. The array factor can be expressed as
Ny Ny . . . .
AF = Z Z Amnejﬁxn sm@cosqﬁejﬁym sin @ cos ¢ 3)
n=Im=I

where f=2x/A,and A is the wavelength.

If the feeding arrangement results in a separable distribution (which is common),

then App = AnA,, and

Nx . . NY . .
AF = AFXAFy _ z Anej,an sin & cos ¢ Z Amejﬁym sm¢9c0s¢‘ (4)
n=1 m=I

Furthermore, if phases are introduced to scan the beam to the direction ('95 , ¢ ), then

Ny . N .
AF = Z Anejﬁxn(sinﬁcosgﬁ—sinﬁs cos ) Z)i Amej,[)’ym (sin @ cos g—sin O cos¢s). (5)

n=l1 m=1
Finally, if the array is uniformly excited (A, =1), the sum becomes a

geometric series with the following closed form result [9]:

sin(NXl//X /2) sin(Nyt//y/2)
Sil’l(l//x /2) sin(l,yy /2)

AF = AR AF, = (6)

where



wy = Bdy (sin@cos ¢ —sin b cos g ) = Bdy (u—Ug)

(7)
yy = Bdy (sin@sin g —sin G sin g ) = fdy (v —vs)
and
U=sinfcos¢
Ug = sin 6 cos ¢
8)

V=sinfsin ¢

Vg =sin & sin gy .

2. Ground Plane Factor

Ground planes are used typically to increase the directivity of the antenna array.
Consider the array to be placed at a height h above a ground plane. If the ground plane is
a perfect conductor of infinite extent, the method of images can be used to compute the
field above the ground plane. The total array, including both the sources and their images,
can be viewed as a planar array, where each element is a linear array along the z-axis as

shown in Figure 5.
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Figure 5. Two-element linear array along the z-axis, where each element is a planar
array (From [7]).

With the images out of phase with the sources, the ground plane factor (GF) for

the two element linear array along the z-axis can be written as
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GF —elfhcosd _g=iBhcost _ 5 jsin (phcos ). 9)

3. Element Factor

The radiation behavior of a single antenna element is signified by its element
pattern and can be characterized by its element factor. In general, the element factor has

both € and ¢ components. The element factors can be derived from the direction cosines

(see Appendix A).

For a half-wave dipole along the x-axis with a maximum feed point current |,

the element factors are

.
—ij cos| —sin @ cos
eI (2 ¢j

EF, = Vio!m 5 5— [cos&cos ¢ (10)
2zr 1—-sin“ @cos” ¢
and
/2
| e iBr cos(zsmﬁcos¢j
EF¢:_J770 m - > |sing (11)
2zr 1—sin” @cos” ¢

where 7, =377 Q 1is the intrinsic impedance of free space. For a half-wave dipole along

the y-axis, the element factors are

/. .
—ij cos| —sin @sin
e ipr (2 ¢j

EF, = Violm 5 5— |cos@sing (12)
27r 1—sin” @sin” ¢
and
V2 .
. —ipr cos(sm @'sin ¢j
EF, = Violme 2 cos¢. (13)
=2 nain2
2zr 1—sin” @sin” ¢

For a half-wave dipole along the z-axis, the element factors are



T
. i cos cosﬁj
2xr sin @

(14)

and

EF; =0. (15)

To normalize the element factors, the leading factor jnolme_m ' / 27t is simply

removed. If the dipoles are ideal (Hertzian with constant current and length of the dipoles
L << 1) instead of half-wave dipoles, then the terms in square brackets [ | become 1, and
L is added to the leading factor. Therefore, after normalization of the element factors,

only the trigonometric functions to the right of the bracketed terms remain.

4, Array Pattern

The total normalized pattern factor of the array is obtained using the principle of

pattern multiplication:

Frorm (9,¢) = (AFX ) AI:y )norm *GFnorm - EFnorm
=(AFy-AFy GF-EF) (16)
- sin (N /2) Sin(NyWy /2) sin(Bhcos @) EF
Ny sin(py /2) Ny sin(yy /2) norm

where EF,q, is the normalized element factor. Note that there are § and ¢ components

of Fyorm (determined by the component of EFym used in Equation (16)).

C. GRATING LOBES

Considering a linear array along the X-axis, the array factor is a pattern that is
symmetric about the axis of the array [9]. Therefore, the visible region is the region of the
array factor that corresponds to —90° <@ <+90°. The visible region is determined by the
element spacing of the array in terms of wavelength. One period of the array factor
appears in the visible region when the element spacing is one-half of the wavelength.

When the element spacing exceeds one-half wavelength, more than one period of the

10



array factor is visible and there may be more than one major lobe in the visible region.
The different visible regions for different element spacing for an array factor with N=20

elements is shown in Figure 6.

ARRAY FACTOR]

FORN=20 Visible region

w = fdsin @

Figure 6.  Visible regions for different element spacing d for N = 20 element array
(After [6]).

These additional major lobes, which have peak intensities equal to that of the
main lobe, are called grating lobes. The subarray spacing for a DSA is generally greater
than one wavelength. Consider a linear DSA made up of M identical and equally-spaced

subarrays separated by distance |, with each subarray having N-element equally-spaced

half-wave dipoles with element spacing d, as shown in Figure 7.

Subarray 1 Subarray 2 Subarray M
1 2 ... N 1 2 ... N 1 2 ... N
B | e | . i | e | ar o

X X

<
<

A4

Figure 7.  Linear arrangement of equally-spaced M subarrays with each subarray
consisting of N-element equally-spaced half-wave dipoles.
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The grating lobes produced by the DSA when M =5N =51, =754 and
dy =1.54 are shown in Figure 8. Broadside of the array is 8 = 0°. Grating lobes are

located at about +42°.

Grating lobes

AA Pattem N
! H r ! '

o
0 T T T T ﬂ T T
) R R A ﬁ ------------------ A A R :

Relative aray pattem (dB)

Figure 8.  Grating lobes produced by linear DSA
(M =5N=51,=752,d,=152).

If we consider a radar array antenna with the element and subarray spacing shown

in Figure 8, it will not be able to distinguish a target at an angle of +42° from one at its

broadside (@=0°). Therefore, the radar may be unable to associate the target with the
correct angle, creating angular ambiguity. Another problem caused by grating lobes is the
unwanted clutter echoes that are picked up by the grating lobes. The result is a reduction

in the signal-to-clutter ratio which can limit target detection [10].

As grating lobes are generally the result of the periodicity associated with widely-
spaced identical contiguous subarrays, one approach to suppress grating lobes is to
implement subarrays of unequal sizes, with random locations of the subarray centers [11].
Another approach is to implement overlapping-subarray architecture to push the grating
lobes away from the main beam and shape the subarray patterns in order to suppress the
grating lobes in the subarray’s low side lobe region [12]. Another possible method to
suppress grating lobes is to use separate transmit and receive array architectures. This
method is based on the principle of pattern multiplication for the two-way pattern design.

12



The grating lobes in the transmit pattern can be suppressed or eliminated by placing nulls

in the receive pattern positions coincident with the transmit grating lobes or vice versa.
D. SUMMARY

The fundamental theory of array antennas was presented in this chapter. The array
pattern was obtained using the principle of pattern multiplication of the element factor,
array factor, and ground plane factor. A two-dimensional array above a ground plane was
considered. Grating lobes are produced when either the element spacing or subarray
spacing is more than one-half wavelength. In most radar applications, it is undesirable to
have grating lobes as they can cause angular ambiguities and excess background clutter.
The subarray spacing for a DSA is generally of multiple wavelengths, and thus, grating
lobes will exist. Therefore, it is of interest to suppress these grating lobes in DSA design.
In the next chapter, the radar range equation for DSA, directivity and gain are introduced.
The approach to suppress undesired grating lobes using the principle of pattern

multiplication is also discussed.
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I11. DISTRIBUTED PHASED ARRAYS

The principle of digital beamforming, the radar range equation for DSA,
directivity, and gain are presented in this chapter. Undesired grating lobes produced by
widely-spaced subarrays can be suppressed by using the principle of pattern

multiplication. This approach is discussed in this chapter.

A BEAMFORMING IN PHASED ARRAYS

Electronic scanning or beamforming in phased arrays is achieved by varying the
amplitude and phase between antenna elements. A conventional phased array usually
employs an analog beamforming network consisting of microwave transmission lines and
power dividers. These are physically large and heavy if there are a large number of
antenna elements, especially for ground or shipboard phased arrays. With the advent of
digital processing, modern phased arrays may use digital beamforming networks. A
phased array that employs a digital beamformer is called digital phased array. A linear

array with digital beamforming on receive is shown in Figure 9.

(n—=Ddsiné |’

> X

N
D" wyexp[ jBdy sinfcos |
n=l1

Figure 9.  Digital array beamforming on receive (After [13]).
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The array factor for the linear array in Figure 9 in the X-z plane (¢ = 0°) is given

N N .
AF (0,¢)= > wyexp[jBd,sin@cosg]= > Ael“N exp[ jBd, sinOcosg] (17)

n=l n=l1
where N is the number of elements, W, = Aneja” is a complex weight added by the
processor, and d,, is given by Equation (1).

If quadrature demodulators are used at each element, they provide spatial samples

of the exponential factor in Equation (17):

In =cos[ jAd, sin@cosg| (18)
Qp =sin[ jAd, sin @ cos 4]. (19)

Therefore, to obtain a response equivalent to a beam scanned in the direction (95,¢s), the

weights must be given by
W, = exp[—jAd, sin 5 cos ¢ |. (20)

B. RADAR RANGE EQUATION FOR DISTRIBUTED SUBARRAYS

The radar range equation (RRE) for distributed radar systems is derived in [4] and
also summarized in [14]. Similarly, we can extend the RRE derivation to radars
employing DSAs if we consider the general geometry of a DSA system as shown in

Figure 10.

The following assumptions are made to simplify the derivation:

o The effects due to multipath are neglected.

o The mutual coupling between subarrays and subarray elements is
neglected.

o The signals are of one polarization.

o The case of monostatic scattering from the target applies.
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—~

J
Om

Subarray m

Figure 10.  General geometry of distributed subarray system (After [14]).

If the target is in the far-field with respect to the DSA, the time-averaged (denoted
by an over-bar) scattered power density from the target at receive subarray m when

subarray N is transmitting is given by [1]

_(RoG
Wi =| 22 [ 1)
4r7R;, 4Ry,

where Hn is the time-averaged power transmitted by subarray n, and Gon is the antenna

gain of subarray n. Note that this includes the element and ground plane factor for

subarray n. The parameter 0 is the RCS of the target (assuming monostatic scattering).

The amplitude of the peak phasor electric field at subarray m is obtained from the

scattered power density

(22)

The phase of the electric field at receive subarray m is determined by the path length

(Rn+Rm). Therefore, the scattered electric field received by subarray m due to

transmitting subarray n is
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214R, Go, 0 .
S _ -
Ein —‘/(4”)2"R%“R% exp{i[~A(Rn+Rn)+v, |} (23)

where v, is the phase added to transmitting subarray n to scan and focus the collective
array beam.

Hence, for Ny transmitting subarrays, the total scattered electric field at the
receiving subarray m is given by

2170R Gon o
(47)* R2R2

E%—ZEmn—z Xp{j[—ﬂ(Rn"‘Rm)""//tn}}- (24)

The total received power can be obtained by multiplying the incident power

density by the effective area of the receive subarray m, Aem . Since the relationship

between gain and effective area [9] is

Gy A°
Mon =4z (25)
we can write the total received power as
G, A2 |Ns [P G, o ?
= 0 0 .
P =—"—> L —exp!j| -B(Ry+Ry)+wt +v; (26)
" () a3\ RiRq Ul )

where W is the phase added to the receive channel to focus and scan the beam.

Since the case of monostatic scattering is considered and we can assume that
equal phase focusing is used to achieve coherence on the target, we can make the
following substitutions:

. For the case of monostatic scattering: R, =R, =R, .
. If the beam is focused on target: Yy +yy =p ( R, + Rm) =2kR, .

For a single receive subarray m, the total received power can be simplified to
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Gy i o
(47[)3 RS

Z\/ Gy,

n=1

27

Tm —

Therefore, if Ng transmit subarrays and M ¢ receive subarrays are used, the total power
received by the DSA is given by

Mg 2 2

27 Y,

=SB = . (28)
mal (47z)3 Ry m=1

Ny _

z VPtnGon
n=1

C. DIRECTIVITY AND GAIN

The directivity of an array antenna is defined as the ratio of the radiation intensity
in a certain direction to the average radiation intensity [9]. The maximum directivity is

given as
D(0.¢)= A| rorm (0.9 (29)

where Q  is the beam solid angle [9] and is defined as

Qp=[" j(;%\Fnorm (0.4 sinododg (30)

and Fpnorm is the normalized pattern factor of the total array. Note that the normalized
subarray pattern for each subarray is of the form of Equation (16). Substituting (30) into
(29), we get

4

77 |Fnorm (‘9>¢)|2 . (1)
Joz IOA| Frorm (9,¢)|2 sinfded ¢

D(6.¢)=

From Equation (31), we observe that the directivity is determined by the total
radiation pattern of the antenna. The power gain measures how efficient the antenna array

is in transforming input power to radiated power and is related to directivity by

G(0.4)=2D(0.4) (32)
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where ¢ 1is the efficiency of the antenna array. Since the antenna effective aperture A,

[9] is related to beam solid angle by
=&, (33)

we can write the power gain of the antenna array as
4z 2
G(0.¢)= ﬂﬁe |Fnorm (9,¢)| : (34)

D. PATTERN MULTIPLICATION

When a DSA is made up of identical subarrays periodically arranged with equal
spacing between subarrays, the total pattern of the DSA is simply the multiplication of

the subarray pattern and the configuration pattern determined by the arrangement of the

subarrays [S5]. For a planar DSA in the X-y plane composed of M, by My uniformly
excited subarrays with spacing | andly , the normalized pattern factor of the total array
is

Frorm (6.4) = I:norms (6,8)x AR (0.9) (35)

where Fnorms (6,9) is the normalized pattern factor of the subarray from (16) and

_sin(My& /2) sin(My&y /2)

© sin(&y/2) sin(fy /2) (6)

AF = AF, AF,

where
&x = Bly (sin @ cos ¢ —sin s cos ¢y )

(37)
&y =ply (sin@sin ¢ —sin b sin gy ) .

Since the geometric arrangement of the subarrays is uniform, the grating lobes of
the total array pattern can be predicted. The angular directions of the grating lobes [10] in

the DSA configuration pattern are located at
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N

sin @ cos ¢ —sin 65 cos gg = il— (38)

>

and

sin@sin@—sin g singg =+

Ii p (39)
y

where p,q=0,1,2,...,. Note that grating lobe locations do not depend on the number

of elements in the subarray.

Similarly, the null locations of the uniform subarray pattern can be found at

sin @ cos @ —sin & cos gy =+ 4 p (40)
xdx
and
. . . . A
sin@sin g —sinfg sin gy = + q (41)
N yd y
except for p, g integer multiples of Ny, N yo respectively.

From (40) and (41), it is observed that the locations of nulls depend on the
number of elements in the subarray. Observing (38) and (39), we see that the condition in
which the grating lobes of the DSA configuration pattern coincide with the nulls of the

subarray pattern is when I, /dy =N, and I, /dy = N . However, this is the condition

for contiguous subarray [12]. In order to suppress some ratio of the grating lobes in the
DSA configuration pattern and still have widely-spaced subarrays congruent to DSA
design, the subarray-to-element spacing ratio and corresponding number of elements per
subarray need to be correctly chosen. A simple program written using MATLAB can be
used to plot out the grating lobe and null locations in the direction cosine space for a
selected number of elements in a subarray, the element spacing, and subarray spacing to
help visualize the suppression of grating lobes of the configuration pattern using
coincident nulls in the subarray pattern. The MATLAB codes for the program are given
in Appendix B. Using an example of a transmit array with the configuration

Ny =Ny =5, dy =dy =0.54, Iy =1, =54, the grating lobe and null locations in
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direction cosine (U, V) space are shown in Figure 11. In this example, the scanning angles

are set to 65 =0° and ¢5 =0°. From Figure 11, we observe that the even-numbered

grating lobes caused by the subarray spacing are suppressed by coincident nulls from the

subarray pattern. Other grating lobes which do not have nulls that are coincident in the u,

V space are not suppressed.

< Nulls
+  Grating Lobes
+  Main Beam

sirg sing

W

" 08 06 0.4 -0.2 0 0.2 04 0.6 0.8 1
u=sinb cosd

Figure 11.  Grating lobes and null locations for transmit array with
Ny =Ny =5, dy=dy =054, Iy =1y =54, 05 =¢5 =0°.

By applying the principle of pattern multiplication, the normalized two-way

pattern is defined as

Fhormye (6,¢) = Frormy, (6:8)% Frorme, (6,4) (42)

where Fnormrx (6,4) is the normalized total pattern of transmit array and FnormRX (6,9)

is the normalized total pattern of receive array. Using the two-way pattern multiplication
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approach, we see that the remaining grating lobes can be suppressed with nulls from the
receive array. If the receive array is configured as a contiguous array such that

Ny =Ny =10, dy =d, =0.54, Iy =1, =54, the grating lobe and null locations will be

coincident as shown in Figure 12.

O  MNulls
% Grating Lobes
#  Main Beam

sing sing

W

T 08 06 04 02 0 02 04 06 ] 1
u=sing cos

Figure 12.  Grating lobes and null locations for receive array with
Ny =Ny =10, dy =dy, =0.54, Iy =1y, =54, 65 =¢5 =0°.

Overlapping the plots for the transmit and receive arrays, it is observed that the
locations of correctly placed nulls of the receive array are coincident with the remaining
grating lobes from the transmit array as shown in Figure 13. Therefore, the remaining

grating lobes can be suppressed.
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Overlap of Grating Lobes & Nulls for XMTR & RCVR Arays, 8_= 0%, ¢_= 0°

"N & XMTR Nulls
UE: +  XMTR Grating Lobes
e O RCVR Nulls
? *  RCVR Grating Lobes
= 4 Main Beam

u=sinf cosd

Figure 13.  Overlap of the grating lobes and null locations for transmit and receive
arrays.

E. SUMMARY

In this chapter, the principles of digital beamforming, directivity, and gain for
phased arrays were presented, and the RRE for radar systems employing DSAs was also
examined. It is understood that undesired grating lobes produced by widely-spaced
subarrays can be suppressed using the principle of pattern multiplication by intentional
placement of nulls coincident to grating lobe locations. To visualize the placement of
grating lobes and nulls for transmit and receive array patterns, their locations are plotted
in direction cosine space using a simple program developed in MATLAB. This forms the
basis of two-way pattern synthesis in deciding the optimum element spacing, subarray

spacing, and number of elements in each subarray, for the transmit and receive arrays.
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In the next chapter, a simulation tool developed to perform the two-way pattern
calculations for DSAs is described. The results of using the tool to simulate the two-way

patterns from different DSA configurations is presented and analyzed as well.
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IV. TWO-WAY PATTERN DESIGN FOR DSA

The simulation tool developed to perform the two-way pattern calculation of
transmit and receive DSAs is described in this chapter. The analysis and simulation

results obtained using the simulation tool for different DSA configurations are also

presented.

A SIMULATION TOOL FOR TWO-WAY PATTERN

The Two-way Antenna Pattern Calculation for Distributed Subarrays program
is a simulation tool developed and implemented in MATLAB to perform the calculation

and display of transmit, receive, and two-way patterns for user configured DSAs. The

graphical user interface (GUI) of the program menu is shown in Figure 14.

— Subarray Configuration

Mumber of Element Spacing
Elements (wavelength)

N 2l o 05

Amplitude Distrigution

Type SLL (B Expinbar
X-Flane | Uniform x|15 1
Z-Plane : | Uniform =15 1

.
Too-way Antenna Pattern - - = o
Two-way Antenna Pattern Calculation for Distributed Subarrays

— Settings for Pattern Plot
Freguency : 100 | MHz Start Angle Stop Angle Step Size
Wyavelength o meters Theta 180 deg 0.1 deg
Elemert Type© | Half wave Dipole v Phi 90| deg 1| deg
Dipole Direction: - girected = — Scen Angl
Heicht Above Ground Plane : 0.5 wavelengths Theta: 4] [ d| 90] dey
Phi: 4] [ | 90| deg
Transmit Array Receive Array
— Array Configuration — Brray Configuration
Mumnber of Subarray Spacing Aipltuce Distriboution humber of Subarray Spacing Ampltudle Distribution
Subarrays (wavelengih) Type SLL (6B) Expinbar BUBETHERS Type SLL (o) Expinbar
hix 20 1% 4 KFlane : niform =[5 1 M 2 ke K-Plane: Uniform - |15 1
Mz 20 Iz 4 ZFlane: unitorm = P : Mz: 2l Z-Plane: | Uniform =||1s 1

— Subarray Configuratio

Muriber af Elemert Spacing Ampltucie Distribition
Elements Type SLL (dB) Expinbar
N g dx ¥-Plane : Uniform ARG 1
Mz g Uz Z-Plane : Uniform =) 15 1

! Calculate Pattern

Calculate Gain

Help

Note that the array is in the X-z plane with the y-axis normal to the aperture as
defined by the coordinate system shown in Figure 15. The ground plane is in the X-z

plane and the array is considered to be placed at a height above the ground plane (in the

positive Yy direction).

Figure 14.

GUI of program main menu.




Planar array in

X-Z plane

Figure 15.

To run the program GUI, the user will need to run MATLAB and set the path or
directory to where the program and its subroutine codes are stored. The program

directory should contain the following MATLAB files:

Coordinate system with planar array in the X-z plane orientation and pattern
angles @ and ¢ (After [8]).

two_way_pattern.m
two_way_pattern.fig
helpfig.m
helpfig.fig
dsaplot.m
caf_hdip2.m
caf_sdip2.m
caf_iso2.m
getamplitudes.m
bayliss.m
cosine.m
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J tayl.m
o compute_gain.m
o gausq20.m
The MATLAB codes and description of the program files are given in Appendix
C. After setting the path or directory, type in two_way_pattern at the MATLAB

command line and the program GUI will be executed.

1. DSA Parameter Inputs

The program GUI provides a convenient way to key in the DSA parameters for
different transmit/receive configurations. The required inputs are classified into basic
parameters, pattern plot range settings, scan angle settings, transmit DSA configuration

settings, and receive DSA configuration settings.

a. Basic Parameters

The basic parameters that the user needs to enter in the program GUI are
frequency (in MHz), element type, dipole direction, and the height of the elements above
the ground plane. The wavelength in meters is automatically calculated by the program
when the array’s frequency information is entered. The user is allowed to select the
element types: half-wave dipole, short dipole, or isotropic element from a pull-down list.
When the half-wave dipole or short dipole is selected, the program allows the user to
choose either X-directed (parallel) or z-directed (collinear) element orientations. The user
is able to set the height of the array elements above a ground plane in terms of

wavelengths.

b. Pattern Plot Range and Step Size

The program computes the DSA pattern plot over the maximum range
0°<H<180° and 0°< ¢ <180°. However, the user can configure that range of angles
for the pattern calculation under the GUI panel labeled Settings for Pattern Plot. The user
is allowed to change the start angle, stop angle, and step size for & and ¢ in degrees. The
range and step size settings are applied to the transmit DSA, receive DSA, and two-way

pattern calculation. If the start and stop values for & are identical, then a pattern cut for
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that value of @ is generated and displayed. Similarly, if the start and stop values for ¢
are identical, then a pattern cut for that value of ¢ is generated and displayed. If a range
of both @ and ¢ is given, then a three-dimensional mesh plot is generated. The step size
setting allows the user to enter an appropriate step interval for @ and ¢ angles. A small

step size gives fine resolution data plots but requires more computation time, while a
large step size requires less time to compute but produces coarse data plots. The default

value for the step size is 3°.

C. Beam Scanning Angles

The array scan angle refers to the steering of the main beam by phase
control. The user is able to set the scan angles for both € and @ independently for the

range 0° < @ <180°and 0°< ¢ <180°. The default scan angles are set to 90°.

d. Transmit/Receive DSA Configuration Settings

Two similar array GUI panels in the main menu allow the transmit and
receive DSAs to be configured independently. Within each panel, the user is allowed to

configure the number of subarrays (M, M) and spacing (l,,1,) in both X and z planes

as well as select the desired amplitude distribution. The default amplitude distribution is
uniform, but a pull-down list box allows the user to choose from taylor, cosine, bayliss,
and triangular amplitude distributions. In the case of taylor, cosine, and bayliss
amplitude distributions, the user is able to select the arbitrary sidelobe level (SLL). The

number of elements (N,, N, ) and element spacing (d,, d,) in both X and z planes that

form a subarray can be configured. Similarly, the amplitude distribution for the elements
in the subarray can also be set.
2. Two-Way DSA Pattern Calculation

After the parameters for the transmit and receive DSAs are set, the user can select
the Calculate Pattern button on the program GUI to initiate the computation of the array

patterns of the transmit and receive DSAs as well as the two-way pattern. The process
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flow diagram to compute and plot the array patterns is shown in Figure 16. The flow
diagram of the sub-process to calculate the DSA one-way array pattern for half-wave

dipoles is shown in Figure 17.

READ USER INPUTS

A 4
INITIALIZE PARAMETERS

\ 4

COMPUTE AMPLITUDE
DISTRIBUTION OF
XMTR/RCVR DSA

getamplitudes.m

COMPUTE ARRAY
PATTERN OF
XMTR/RCVR DSA >
(HALF-WAVE DIPOLE)
caf_hdip2.m

HALF-WAVE
DIPOLE

COMPUTE ARRAY
PATTERN OF

XMTR/RCVR DSA »

(SHORT DIPOLE)
caf_sdip2.m
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DIPOLE

COMPUTE ARRAY
YES PATTERN OF
XMTR/RCVR DSA »
(ISOTROPIC)
caf iso2.m

ISOTROPIC

NO

<
<

A 4

COMPUTE TWO-WAY
PATTERN

Foruay > 9)> Py (0:)

v

PLOTTING AND
POSTPROCESSING

Figure 16.  Flow diagram for calculating two-way pattern of DSAs.
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READ FUNCTION INPUTS
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Figure 17. Flow diagram of function caf_hdip2.m to calculate DSA one-way pattern
for half-wave dipole elements.
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3. Output Plots for DSA Patterns

When the start and stop values for @ are identical, the program generates and
displays the rectangular plots for the normalized transmit DSA, receive DSA, and two-
way pattern cut for that value of @ in both € and ¢ components. Similarly, if the start
and stop values for ¢ are identical, the program generates and displays the rectangular
plots for the normalized transmit DSA, receive DSA, and two-way pattern cut for that
value of ¢ in both @ and ¢ components. For the configuration settings from Figure 14,
the rectangular plots for the normalized transmit DSA, receive DSA, and two-way pattern
cut for ¢ =90° in @ component are illustrated in Figures 18, 19 and 20 respectively.
When a range of both € and ¢ are given, the program produces normalized three-
dimensional mesh plots for the transmit, receive, and two-way patterns of the DSAs in
both @ and ¢ components. Using similar configuration settings from Figure 14, but
setting the pattern plot range for both € and ¢ from 0° to 180°and the step size 1°, we

get the output mesh plot for the two-way pattern for the & component in Figure 21. The

mesh plot is given in direction cosine (U, W) space.
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Figure 18. Normalized transmit DSA pattern for & component, ¢ = 90° pattern cut.
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Figure 21. Example of mesh plot of normalized two-way pattern for & component.

4. Gain Calculation

The user can select the Calculate Gain button on the program GUI to initiate the
gain calculation of the transmit and receive DSAs as well as the two-way pattern. The
computation of gain is performed based on the parameters configured on the program

GUL Gain calculation is performed numerically using N, and Ny intervals of Gaussian

quadrature integration, with 20 points per interval, over the range 0°<#<180° and

0°< ¢ <180°. The integration constants are loaded from MATLAB file gausq20.m.

The user is required to set the number of integration intervals for the range of @ and ¢ in

a user input dialog box after the Calculate Gain button is selected. The user input dialog
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box is shown in Figure 22. The user should enter positive integer values only. The total
number of integration points is the product of the number of integration intervals
multiplied by 20. For example, if the integration interval for € is set to four, the total
number of integration points is 80 over the range 0°<@<180°. If there are also
four intervals in ¢, the total number of integration points is 80x80=6400. A large

integration interval produces more accurate gain results but increases the computation

time.

rn Set nu... [ s Lo |_£E_J

Mumber of intervalzs for theta:

4

Mumber of intervals for phi:

| QK || Cancel |

Figure 22.  User input dialog box to set integration intervals for € and ¢ for gain
calculation.

The process flow diagram for two-way gain calculation is shown in Figure 23.
The program calls a sub-process from MATLAB function file compute_gain.m to
calculate the one-way gain of the transmit DSA and receive DSA. The flow diagram of

the sub-process for one-way gain calculation is shown in Figure 24.

After the computation is completed, power gain results for the transmit DSA,
receive DSA, and two-way pattern are displayed in both numeric and decibel format. The
power gain results computed for the configuration settings in Figure 14 are shown in

Figure 25. An integration interval value six is used for both € and ¢ .
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Figure 23.  Flow diagram for calculating two-way power gain of DSAs.
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Figure 24.  Flow diagram of function compute_gain.m to calculate power gain for a
DSA.
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ru Gain Results __r l-=-|-=-|_ﬁ_J

Tranzmit Array
Mumeric gain = 104274774, GainindB = 401818 dE

Receive Array
Mumeric gain = 3152119, Gainin dB = 291127 dB

Twio-way numenc gain = 8500604.1 286
Twio-way Gain in dB = £9.2945 dB

Figure 25. Example of power gain results dialog window.

5. Pattern and Configuration Data Files

After the computation of the array patterns, the results in complex form and the
configuration settings are auto-saved to MATLAB binary data format files
dsapattern.mat and dsaconfig.dat, respectively, in the program directory. These files
allow the user to extract the pattern data and configuration settings easily in MATLAB.

The files are overwritten when a new pattern calculation process is initiated.
B. DSA SIMULATIONS AND RESULTS

To illustrate the suppression of grating lobes by placement of coincident nulls
using the principle of pattern multiplication, the example of transmit and receive array
configuration settings from Figure 26 is used. An isotropic element is selected as the
antenna element type, and the transmit and receive arrays are placed at a height of 0.25 4
above a ground plane. Uniform amplitude distribution is used for both transmit and

receive arrays with beam scan angles 65 = ¢ =90° (i.e., no beam scan). The transmit

antenna consists of DSAs, and the separate receive antenna is configured to be
contiguous designed with an array pattern that has nulls in the direction of the transmit

array’s grating lobes.
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Figure 26. Configuration settings for transmit and receive DSAs to show suppression

of grating lobes.

Using the configuration Ny =N, =5,d, =d, =0.54, M, =M, =5,1, =1, =54

for the transmit array, we have |, /dy, =2N, and |,/d, =2N,. Using the simulation

tool, we obtain the normalized transmit array pattern for the € component with pattern
angle range 0°< 6 <180°, ¢=90° cut shown in Figure 27. From Figure 27, we observe
that the even-numbered grating lobes due to subarray spacing at @ pattern angles 36.8°,
66.4°, 113.6° and 143.2° are suppressed by coincident nulls from the subarray pattern.
However, the grating lobes at 8 pattern angles 11°, 53.2°, 78.7°, 101.3°, 126.8° and 169°
are not suppressed. The peak SLL due to grating lobes is observed to be —3.7 dB. From
Figure 27, the beamwidth between first nulls (BWFN) of the transmit array is
approximately 4.6°. The half-power beamwidth (HPBW) of the transmit array is
approximately 2°. The three-dimensional mesh plot and contour plot for the pattern

angles 0°< 6 <180° and 0°< ¢ <180° of the transmit array pattern for the & component
are shown in Figures 28 and 29, respectively. The step size for both § and ¢ of the

pattern plots are set to 0.3°. From the mesh and contour plots, we are able to observe the

grating lobe locations in direction cosine (U, W) space.
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Figure 27. Normalized transmit array pattern for the & component, ¢ =90° cut with
configuration settings N, =N, =5,d, =d, =0.54, M, =M, =5,1, =1, =51.
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Figure 28. Normalized mesh plot of transmit array pattern for the & component with

configuration settings Ny, =N, =5,d, =d, =0.54, M, =M, =5,1, =1, =51.
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Figure 29. Normalized contour plot of transmit array pattern for the & component with
configuration settings Ny, =N, =5,d, =d, =0.54, My =M, =51, =I, =541.

To place nulls at the remaining grating lobe locations of the transmit array, we
can apply a contiguous subarray configuration for the receive array with the settings
given in Figure 26. The normalized receive array pattern for the 6 component with
pattern angle range 0° <@ <180°, ¢=90° cut is shown in Figure 30. Since the receive
array is contiguous with element spacing 0.54, no grating lobes exist in the visible
region. The peak SLL is observed to be —13.3 dB. The BWFN of the receive array is
approximately 4.6°, and HPBW of the receive array is approximately 2°. The three-
dimensional mesh plot and contour plot for the pattern angles 0°<#<180° and

0° <@ <180° of the receive array pattern for the & component are shown in Figures 31

and 32, respectively. The step size for both @ and ¢ of the pattern plots are set to 0.3°.
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Figure 30. Normalized receive array pattern for the & component, ¢ =90° cut with
configuration settings Ny, =N, =10,d, =d, =0.54, M, =M, =5,1, =, =54.
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Figure 31. Normalized mesh plot of receive array pattern for the & component with
configuration settings Ny, =N, =10,d, =d, =0.54, M, =M, =5,1, =, =54.

44



Receie DSA Pattern

T} o = L
0L |

0.4t

0z

cos g
i

""1'*

W

02

IR0 Geagles .
o+ :

oY} — o E 2=

-1 08 0B 04 0Z 0 0z 0.4 06 0.8 1
U = sincosd

Figure 32. Normalized contour plot of transmit array pattern for the & component with
configuration settings Ny, =N, =10,d, =d, =0.54, M, =M, =5,1, =, =54.

The normalized two-way pattern of the & component, ¢ =90° pattern cut, for the
configuration settings given in Figure 26 is shown in Figure 33. It is observed that the
grating lobes at @ pattern angles 11°, 53.2°, 78.7°, 101.3°, 126.8° and 169° of the
transmit array have been suppressed. The peak SLL of the two-way pattern is —25.5 dB
due to the subarray sidelobes at € pattern angles 86.7° and 93.3°. The grating lobes at
0="78.7°,101.3° are suppressed to —29 dB. The improvement factor in grating lobe
suppression is 25.3 dB. The BWFN of the two-way pattern is approximately 4.6°, and
HPBW of the two-way pattern is approximately 1.5°. The three-dimensional mesh plot
and contour plot for the pattern angles 0° <8 <180° and 0°<¢@<180° of the two-way
pattern for the & component are shown in Figures 34 and 35, respectively. The step size

for both @ and ¢ of the pattern plots are set to 0.3°.
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Figure 33. Normalized two-way pattern for the & component, ¢ =90° cut of a
transmit DSA with contiguous receive subarrays configuration.
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Figure 34. Normalized mesh plot of two-way pattern for the & component in direction

cosine space.
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Figure 35. Normalized contour plot of two-way pattern for the & component in

direction cosine space.

Using an integration interval of ten for both § and ¢, we get the power gain

results of the transmit array, receive array, as well as the two-way power gain shown in

Figure 36. The simulation results of the DSA configuration settings in Figure 26 are

summarized in Table 1.

.
Gain Results [
"

Tranzmit Array
Mumeric gain = 1955.425E, Gain in dB = 32.9124 dB

Feceive Amay
Mumeric gain = 7737.4208, Gainin dB = 38.9195 dB

Two-way numeric gain = 152472761548
Two-way GainindB = ¥1.8319 dB

0K

Figure 36. Power gain results of transmit DSA with
contiguous receive subarrays configuration.
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Table 1.

Summary of simulation results of transmit DSA with contiguous receive

subarrays configuration.
Peak SLL BWFN HPBW Power Gain
Transmit Array —3.7dB 4.6° 2° 329dB
Receive Array —-13.3dB 4.6° 2° 38.9dB
Two-way Pattern -25.5dB 4.6° 1.5° 71.8 dB

From the simulation results, it is observed that two-way pattern multiplication

approach is effective in suppression of grating lobes. In this example, a grating lobe

suppression of at least 25 dB can be achieved.

In the next example, both transmit and receive antennas are configured as widely
spaced, thinned arrays [15] to achieve a narrow scanned beam for very good angular
resolution without the cost and space required of a fully filled array. Chebyshev

illumination is applied to achieve low sidelobe patterns. The transmit array and receive

array configuration settings is given in Figure 37.

s e S s 0 =i
Two-way Antenna Pattern Calculation for Distributed Subarrays
[ Settings for Pattsrn Plat
Frequency 4000 MHz Start Angle Stop Angle Step Size
Wavelength 0075 meters Theta 0 deg 180 deg 0.1 deg
Elemert Type:  Haif wave Dipole  + Phi 90 dag 90| dag 3| deg
Dipole Direction: - girected = "~ Sean Angl
4 »
Height Above Ground Flane 0.25| wavelengthe UREH) [ [ ‘ 90| ceg
Phi: [ [ 3} 90 deg
Transmit Array Receive Array
— Array Configurat — Array C
Humber of Subarray Spacing Amplitude Distribution Number of  Subarray Spacing Ampltuds Distribution
Subarrays (wavelength) Type SLL (681 Expinkar Subatrays (wavelzngth) Type SLL (899 Expuribar
ltis 16 tEs 3 *-Plane  Taylor v w5 o« M 6 M 4 X-Plene  Taylor |40 w|s =
Mz 16 Iz 3 ZPlane ! Taylor e |5 - Mz 6 Iz 4 ZPiane : Taylor >l =[5 =
Configurati — Bubarray Configurat
Mumber of  Elemert Spacing Ampltude Distribution Number of  Element Spacing Amplitude Distribution
Elements (wavelength) Tyne SLL (B Exinbar Elements (wavelzngth) Type SLL (eB) Expinbar
G2z 4 axs 05 H-Plane: uniform =15 1 N 4 o 0.5 H-PIaNG Uniform > |15 1
Hz: N dx 05 Z-Plane - Uniform - 15 1 Mz : 4| oz 0.5 Z-Plane : Uniform =15 1 I
I
Il
culate Pattern | Calculate Gain Ext Help i

Figure 37.
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The transmit array is made up of 16x16 subarrays with 34 spacing. The receive
array is made of 16x16 subarrays with 41 spacing. Each subarray consists of 4x4 z-
directed half-wave dipole elements placed at a height of 0.251 above a ground plane.
Taylor amplitude distribution with 40 dB SLL and 0 =5 is applied to both transmit and

receive array configurations. Beam scan angles &5 =@ =90° are considered. The
normalized transmit array pattern of the 16x16 subarrays for the ¢ component with
pattern angle range 0°< 6 <180°, ¢ =90° cut is shown in Figure 38. The peak SLL due
to grating lobes at 6 =70.6°,109.4° is observed to be —7.9 dB. The BWFN and HPBW

of the transmit array pattern is approximately 4.4° and 1.5°, respectively. The three-
dimensional mesh plot and contour plot for the pattern angles 0°<#<180° and

0° < ¢ <180° of the transmit array pattern for the & component are shown in Figures 39

and 40, respectively. A step size of 0.1° is used for both # and ¢ of the pattern plots.
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Figure 38. Normalized transmit array pattern of 16 x16 subarrays with spacing 34 for
the & component, ¢ =90° cut.
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Figure 39. Normalized mesh plot of transmit array pattern of 16x16 subarrays with
spacing 34 for the & component.
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Figure 40. Normalized contour plot of transmit array pattern of 16x16 subarrays with
spacing 34 for the & component.
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The normalized receive array pattern of the 16x16 subarrays for the &

component with pattern angle range 0°<6<180°, ¢=90° cut is shown in Figure 41.
The peak SLL due to grating lobes at 8 =75.6°,104.4° is observed to be —4.1 dB. Notice

that the grating lobe locations of the transmit and receive arrays are not coincident due to
their different subarray spacing. The BWFN and HPBW of the receive array pattern is
approximately 3.2° and 1.1°, respectively. The three-dimensional mesh plot and contour
plot for the pattern angles 0°< 6 <180° and 0° < ¢ <180° of the receive array pattern for
the & component are shown in Figures 42 and 43, respectively. A step size of 0.1° is

used for both & and ¢ of the pattern plots.
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Figure 41. Normalized receive array pattern of 16x16 subarrays with spacing 44 for
the & component, ¢ =90° cut.
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Figure 42. Normalized mesh plot of receive array pattern of 16x16 subarrays with 44
for the & component.
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Figure 43. Normalized contour plot of receive array pattern of 16x16 subarrays with
42 for the & component.
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The normalized two-way pattern of the € component, ¢=90° pattern cut, is

shown in Figure 44. It is observed that the grating lobes for both transmit and receive
arrays have been suppressed since their locations are not coincident, and both transmit
and receive array patterns have low SLLs (exclusive of the grating lobes). The peak SLL
of the two-way pattern is —49.7 dB at 8=76.1°,103.9°. The BWFN of the two-way
pattern is approximately 4.4°, and HPBW of the two-way pattern is approximately 0.9°.
The three-dimensional mesh plot and contour plot for the pattern angles 0°< 6 <180°

and 0° < ¢ <180° of the two-way pattern for the & component are shown in Figures 45

and 46, respectively. The step size for both @ and ¢ of the pattern plots are set to 0.1°.

Two-way Pattern, $=90° cut
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m 1 1 1 1 1 1 1 1
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Figure 44. Normalized two-way pattern of thinned transmit and receive arrays for the
6 component, ¢ =90° cut.
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Figure 45. Normalized mesh plot of two-way pattern of thinned transmit and receive
arrays for the & component.
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Figure 46. Normalized contour plot of two-way pattern of thinned transmit and receive
arrays for the & component.
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Using an integration interval of 18 for both & and @, we get the power gain

results of the transmit array, receive array, as well as the two-way power gain shown in

Figure 47. The simulation results are summarized in Table 2.

r Gain Results l = | |_-$-:hr

Transmit Aray
Mumeric gain = ¥333.0546, Gain in dB = 39.025 dB

Receive Amay
Mumeric gain = 8027.0459, Gain in dB = 29.045E 4B

Two-way numenc gain = 64123508 4401
[ Two-way Gainin dB = 72.0705 dB ]

e )

Figure 47. Power gain results using thinned transmit and receive array configurations.

Table 2. Summary of simulation results for thinned transmit and receive array

configurations.
Peak SLL BWFN HPBW Power Gain
Transmit Array —7.9dB 4.4° 1.5° 39dB
Receive Array —4.1dB 3.2° 1.1° 39dB
Two-way Pattern —49.7 dB 4.4° 0.9° 78 dB

The transmit array pattern, receive array pattern and two-way pattern when the

main beam is scanned to 65 =100° are shown in Figures 48, 49 and 50, respectively. It is

observed that the peak SLL, BWFN and HPBW are typically unchanged for small beam

scan angles.
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Figure 48. Normalized transmit array pattern of 16 x16 subarrays with spacing 31
when scanned to 6, =100°.
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Figure 49. Normalized received array pattern of 16 x16 subarrays with spacing 41
when scanned to 6 =100°.
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Figure 50. Normalized two-way pattern when scanned to 65 =100°.

The transmit array pattern, receive array pattern and two-way pattern when the

main beam is scanned to 65 =140° are shown in Figures 51, 52 and 53, respectively. For

large scan angles, beam broadening effect is more evident, and the peak SLL is increased.
The peak SLL for the two-way pattern is —40.2 dB when the beam is scanned to
6, =140°.
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Figure 51. Normalized transmit array pattern of 16 x16 subarrays with spacing 31
when scanned to 6, =140°.
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The two-way patterns of beams scanned at increments of A&y =5°

75° < @5 <105° are illustrated in Figure 54.
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Two-way Pattern, =90 cut
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Figure 54. Normalized two-way pattern of multiple beam scanning for 75° < 6 <105°
with Agg = 5°

We see from the simulation results that using separate transmit and receive array
patterns with non-coincident grating lobe locations and low sidelobe illumination, the
grating lobes can be effectively suppressed. Although beam broadening usually
accompanies low sidelobe illuminations, a narrow beamwidth of the two-way pattern can

still be achieved with wide subarray spacing.
C. SUMMARY

A simulation tool was developed and implemented in MATLAB to perform the
two-way pattern calculation of transmit and receive DSAs. The features of the simulation
tool were described in this chapter. The simulation tool was also able to perform gain

calculation for the transmit and receive DSAs, as well as compute the two-way gain.

Using the simulation tool, we demonstrated the effectiveness of the two-way
pattern multiplication approach to suppress undesired grating lobes by placement of
subarray nulls at the grating lobe locations. In this chapter, we also showed that low SLL
and narrow HPBW of the two-way antenna pattern can be achieved with thinned transmit
and receive arrays consisting of widely-spaced subarrays with non-coincident grating

lobe locations.
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V. SUMMARY AND RECOMMENDATIONS

A SUMMARY

The primary objective of this research was to develop a simulation tool to
investigate the behavior and effectiveness in suppressing undesired grating lobes using
the approach of two-way antenna pattern in DSA design. The fundamental array theory
and principle of pattern multiplication, which formed the basis of the simulation tool
design, were discussed. Using the principle of pattern multiplication, we can suppress
grating lobes by placement of subarray nulls at grating lobe locations. A simple program
was developed in MATLAB to allow the user to visualize the placement of grating lobes
and nulls in direction cosine space for a DSA configuration in the visible region. A
simulation tool with GUI was developed and implemented in MATLAB to perform the
two-way antenna pattern and power gain calculations for user configured DSAs. The
program is capable of performing two-way pattern and power gain calculations for linear
or planar DSAs consisting of isotropic elements, half-wave dipoles or short dipoles above
a ground plane. The program is able to present the simulation results in the & pattern cut,

@ pattern cut, or as a three-dimensional mesh plot in direction cosine space. The program

GUI provides a convenient way for the user to tweak the design configurations very
quickly by changing the DSA parameters. The program can serve as a useful tool for both
students and electromagnetic professionals to determine and study the two-way pattern

and power gain of different transmit/receive DSA designs.

The effectiveness of the two-way pattern multiplication approach to suppress
undesired grating lobes by placement of subarray nulls at the grating lobe locations was
demonstrated using the simulation tool. For a transmit DSA with subarray spacing of 51
and uniform amplitude illumination, a SLL of —25.5 dB was achieved. Using the
simulation tool, we demonstrated that low SLL and narrow HPBW of the two-way
antenna pattern can be achieved using thinned transmit and receive arrays consisting of
widely-spaced subarrays with non-coincident grating lobe locations. The simulation
results showed that a SLL of —49.7 dB and HPBW of 0.9° were obtained for broadside

illumination. Simulation was carried out to examine the effects on the two-way pattern
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when different scan angles were applied. The simulation results showed that beam
broadening was evident and peak SLL was increased for the two-way antenna pattern
when large scan angles were applied to the main beams of the transmit and receive
arrays. It was assumed that the main beams of the transmit and receive arrays were

scanned to the same angle.
B. RECOMMENDATIONS

At this time, the simulation tool allows us to study the two-way pattern for
equally-spaced linear or rectangular DSAs. Other common array configurations include
triangular arrays and circular arrays. A triangular grid is known to be more efficient than
a rectangular grid for the suppression of grating lobes because fewer elements are
required for a given aperture size [10]. Circular arrays, in which the elements are placed
in a circular ring, have the advantage of symmetry in azimuth, making them suitable for
applications that require full 360° coverage, such as direction-finding, air and space
navigation, and underground propagation [16]. It would be useful to upgrade the
simulation tool to be able to compute the two-way pattern of triangular, circular and other

array configurations to allow the study of their two-way patterns.

Phase shifters are used to control the location and shape of the antenna beam. In
practice, most phase shifters are digitally controlled devices, which allow only discrete
values for the phase shift. Therefore, truncation or round-off error must be introduced
onto the phase shifts, and this yields a periodic quantization error that gives rise to
quantization lobes [10]. The current version of the simulation tool assumes continuous
phase shift in the calculation and does not account for the effect of phase quantization. It
is essential to include some round-off error or truncation methods for the phase shift

computation as a future improvement to the program.
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APPENDIX A. DIPOLES OF ARBITRARY ORIENTATION!

The dipole is centered at the origin as shown in Figure Al. The dipole direction is

given by the vector

A

| =Xsind, cos@, + ¥sinb, singy +2cos b, . (43)
——
Ua Va Wa

The dipole direction cosines are

X-direction cosine : Uy = cos ay = sin &, cos @y,
y-direction cosine:V, = cosay =sin b, singy, (44)

z-direction cosine : Wy = cosa; =cosb, .

The length of the dipole is L, and for a half-wave dipole the current distribution is given

by the function of the path length variable ¢’
1(¢)=lycos(Bl), —L/2<0'<L/2 (45)

where | is the maximum value at the feed point. For an ideal (Hertzian) dipole with

constant current
1) =1y, —L/2</'<L/2, L<<A. (46)

The direction cosines for the far-field observation point are

X-direction cosine : U = sin & cos ¢
y-direction cosine : V = sin #sin ¢ (47)

Z-direction cosine : W =cos .

! The material for Appendix A is from “Arbitrary dipoles” unpublished notes of David C. Jenn.
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Figure A1.  Dipole of arbitrary orientation centered at the origin
The far-field radiation integral can be written as
. ~ L/2
- - I T
E(0,9) =100l o-ipr | (el (48)
4rr L2

where it is understood that the f component is discarded. For the ideal dipole the integral

is

L/2 o
[ |(z')elﬁf(r-')de'=|mLsmc[ﬂL2r IJzImL (L<< ), (49)
—-L/2

and the resulting spherical field components are

4rr (50)
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From the transform tables:

6 =Xcos@cosg+ Ycos@sing—7Zsinf

R (51)
¢=—-Xsing+ycosg.

For a Hertzian dipole along the z-axis (‘9a =¢, =0°, | = 2) :

D>

A
| o
A

IO(}

and the fields reduce to the familiar results

—7e0=—sinf

(52)
o =O,

>

Il
N>

E, = jﬂﬁolmLe—jﬂr
4rr (53)
Es=0.

sin@

For a half-wave dipole (L = 1 /2), the integral from (48) is
L/2 i g (50F) . L/2
j |mcos(,b’£')ej'8€,(f‘|)d£’: Ine [Jﬂf fe C(;S(ﬂﬂ)+ﬂs1n(ﬂf )]
-L/2 [ (D) + B

(54)

-L/2 .

After applying some trigonometric identities, we get the final result for the far electric
field

£ —jpr cos(”fOf)
— 7,1 m! € B}
E(0.9) =T e (55)
27f 1—(fel)
For a half-wave dipole along the z-axis (6, = ¢, = 0°,1 = 2):
fel=cosf=w,
. (56)
Oel =—sind,
: —jpr cos(”cos@)
2rr sin &

Ey=0.
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For a half-wave dipole along the y-axis (6, = ¢, = 90°,1 = §):

| =sinfsing=v,

e
Oel =cosfsing,

g;OI =cosq,
. i v/ . ]
in | e i cos(sm&smgb)
Ey = 10 m © 2 3 3 cos@sing,
2z | 1-sin“ fsin“ ¢ |
. 0 Y/ . ]
in | e IBr cos(sm@smqﬁ)
E¢:JT70 m € 22 L lcosg.
2z | 1-sin“@sin”“ ¢ |

For a half-wave dipole along the x-axis (aa =90°,¢, = 0°,1 = x) :

¢?OI =-sing,
. v/

i | e BT cos(sm&cos¢)

Ep = Vio'm © 2 3 3 cosfcosg,

2z 1—sin” @cos” ¢
. Y/

in | e ifr cos(sm@cos¢)

2zr 1—sin” Ocos” ¢
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APPENDIX B.

MATLAB CODE FOR PLOTTING GRATING

LOBES AND NULL LOCATIONS OF ARRAY PATTERN

% Plot_rect_nulls_and_grating_xyplane.m

% This code computes and plots the nulls and grating lobes locations
% for rectangular lattice of DSAs in x-y plane in the direction

% cosine space. Comparison is made between XMTR and RCVR DSAs to

% observe the placement of nulls at grating lobe locations to

% suppress grating lobes.

% Modified by Cher Hock Hin

% Date: 8 Aug 2012

clear
rad=pi/180;

%XMTR array settings

dxt=0.5; dyt=0.5; %element spacing in x and y plane (in wavelengths)
Nxt=5; Nyt=5; %number of elements in x and y plane
Ixt=5; lyt=5; %subarray spacing in x and y plane (in wavelengths)

%RCVR array settings

dxr=0.5; dyr=0.5; %element spacing in x and y plane (in wavelengths)
Nxr=10; Nyr=10; %number of elements in x and y plane
Ixr=5; lyr=5; %subarray spacing in x and y plane (in wavelengths)

%scan angle

thetas=0; thetar=thetas*rad;

phis=0; phir=phis*rad;

us=sin(thetar)*cos(phir); vs=sin(thetar)*sin(phir);

fmhz=100;
f=fmhz*1e6;
wave=3e8/T;

wdx=1/dxt; %lambda/spacing
wdz=1/dyt; %lambda/spacing
N=20; %sets the number of grating lobes to plot

pt=0; 1t=0; pr=0; 1r=0;

for n=-N:N;
for m=-N:N

Dxt=n/dxt/Nxt+us; Dyt=m/dyt/Nyt+vs;
xlobet=n/Ixt+us; ylobet=m/lyt+vs;
lobet=sqrt(xlobet"2+ylobet"2);

nul It=sqrt(Dxt"2+Dyt"2);

if nullt<=1l %find XMTR array nulls

pt=pt+1;

Xt(pt)=Dxt; Yt(pt)=Dyt;

end

if lobet<=1 %find XMTR array grating lobes

1t=1t+1;

Xlobet(It)=xlobet; Ylobet(lt)=ylobet;

end

Dxr=n/dxr/Nxr+us; Dyr=m/dyr/Nyr+vs;
xlober=n/Ixr+us; ylober=m/lyr+vs;
lober=sqgrt(xlober"2+ylober~2);

nul lr=sqrt(Dxr"2+Dyr~2);

if nullr<=1 %find RCVR array nulls

pr=pr+1;

Xr(pr)=Dxr; Yr(pr)=Dyr;

end

if lober<=1 %find RCVR array grating lobes
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Ir=Ir+1;
Xlober(lr)=xlober; Ylober(lr)=ylober;
end
%main beam
if m==0 & n==0, XOt=Dxt; YOt=Dyt; end
end
end
%unit circle
t=0:360; cx=cos(t*rad); cy=sin(t*rad);

figure(l), clf %plot for XMTR array
plot(Xt,Yt,"bd",Xlobet,Ylobet, "m+",X0t,YOt,"r*",cx,cy,"-r")
legend("Nulls®,"Grating Lobes®,"Main Beam®, "Location®,"EastOutside~)
axis([-1,1,-1,1])
title({["XMTR Array, \theta_s= °,num2str(thetas), "o, \phi_s=
*,num2str(phis), "o "];--.

[*N_x = ",num2str(Nxt),", d_x = ",num2str(dxt), “\lambda, *,"1_x =
" ,num2str(Ixt), “\lambda, *,...

Ny = ",num2str(Nyt), ", d_y = ",num2str(dyt), “\lambda, *,"l_y =
" ,num2str(lyt), "\lambda“"]:;})
axis square
xlabel ("u=sin\theta cos\phi®)
ylabel ("v=sin\theta sin\phi®)

figure(2), clf %plot for RCVR array
plot(Xr,Yr, "ks",Xlober,Ylober, "bx",X0t,YOt,"r*",cx,cy,"-r")
legend("Nulls®,"Grating Lobes®,"Main Beam®, "Location”®,"EastOutside®)
axis([-1,1,-1,1])
title({["RCVR Array, \theta_s= ",num2str(thetas), "o, \phi_s=
*,num2str(phis),“"~o"];--.

[*N_x = ",num2str(Nxr),", d_x = ",num2str(dxr), “\lambda, *,"1_x =
*,num2str(Ixr), “\lambda, *,...

Ny = ",num2str(Nyr), ", d_y = ",num2str(dyr), “\lambda, *,"l_y =
*,num2str(lyr), "\lambda“"]:;})
axis square
xlabel ("u=sin\theta cos\phi®)
ylabel ("v=sin\theta sin\phi~®)

figure(3), clf %plot overlap of XMTR and RCVR array

plot(Xt,Yt,"bd",Xlobet,Ylobet, "m+" ,Xr,Yr, "ks",Xlober,Ylober, "bx", ...
X0t,YOt,"r*",cx,cy,"-r")

legend("XMTR Nulls®,"XMTR Grating Lobes”,"RCVR Nulls®,"RCVR Grating

Lobes*®,*Main Beam®, "Location”, "EastOutside®)

axis([-1,1,-1,1])

title(["Overlap of Grating Lobes & Nulls for XMTR & RCVR Arrays, \theta_s=

" ,num2str(thetas), "o, \phi_s= ",num2str(phis),“"~o"])

axis square

xlabel ("u=sin\theta cos\phi™)

ylabel ("v=sin\theta sin\phi~®)
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APPENDIX C. MATLAB CODE FOR SIMULATION TOOL

function dsaplot(action)

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

dsaplot.m

Version: 2.1

Author: Cher Hock Hin

Advisor: Professor David C. Jenn
Date: 13 August 2012

Uses the function "caf _hdip2.m", "caf_sdip2.m"™ and "caf_iso2.m
to compute XMTR and RCVR array patterns for half wave dipoles,
short dipoles and isotropic elements which return outputs in
complex form (non-dB).

Two-way pattern is then computed using pattern multiplication.
Two-way gain is also computed using method of numerical
integration.

Pattern and gain calculation is based on user configuration
of XMTR and RCVR planar arrays consisting of dipoles or
isotropic elements above a ground plane. The arrays are
oriented in the x-z plane; ground plane is the x-z plane;

y axis is normal to ground plane.

switch(action)

%Case for frequency

case "frequency”
h_frequency = findobj(gcf,“"Tag”, "frequency®);
freq_str = get(h_frequency, "String”);
freq = getFreq(freg_str);
set(h_frequency, "String” ,num2str(freq));
wavelength = 3e8/freq/1le6;
h_wavelength = findobj(gcf, "Tag", "wavelength®);
set(h_wavelength, "String” ,num2str(wavelength));

%Case for element type selection
case “eltype*
h_eltype = get(findobj(gcf,"Tag", "eltype”), "Value™);
if h_eltype ==
set(findobj(gcf, "Tag", "dipdir®),“Enable”, "off");
else
set(Ffindobj(gcf, "Tag", "dipdir®),"Enable”,"on");
end

%Case for phi start angle

case “pstart”

h_pstart = findobj(gcf,"Tag", "pstart”);
pstart_str = get(h_pstart,"String”);
pstart = getPStart(pstart_str);
set(h_pstart, "String”,num2str(pstart));

%Case for phi stop angle

case "pstop”

h_pstop = findobj(gcf, "Tag", "pstop”);
pstop_str = get(h_pstop, "String");
pstop = getPStop(pstop_str);
set(h_pstop, "String”,num2str(pstop));

%Case for theta start angle
case “tstart”
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h_tstart = findobj(gcf,"Tag", "tstart”);
tstart_str = get(h_tstart,"String");
tstart = getTStart(tstart_str);
set(h_tstart, "String”,num2str(tstart));

%Case for theta stop angle

case "“tstop”

h_tstop = findobj(gcf, "Tag", "tstop”);
tstop_str = get(h_tstop, "String”);
tstop = getTStop(tstop_str);
set(h_tstop, "String”,num2str(tstop));

%Case for thetas_slider
case "thetas_slider”
h_thetas_slider = findobj(gcf, “Tag", "thetas_slider®);
thetas = ceil(get(h_thetas_slider, "Value™));
h_thetas = findobj(gcf, "Tag", "thetas");
set(h_thetas, "String”,num2str(thetas));

case "thetas”
h_thetas = findobj(gcf,"Tag", "thetas");
thetas = str2num(get(h_thetas, "String”));
thetas = getScanAngle(thetas); %validate range between 0 to 180
h_thetas_slider = findobj(gcf,"Tag", "thetas_slider®);
set(h_thetas_slider, "Value®,ceil(thetas));
set(h_thetas, "String” ,num2str(thetas));

%Case for phis_slider
case "phis_slider”
h_phis_slider = findobj(gcf, "Tag", "phis_slider®);
phis = ceil(get(h_phis_slider, "Value®));
h_phis = findobj(gcf, "Tag", "phis®);
set(h_phis, "String”,num2str(phis));

case "phis”
h_phis = findobj(gcf, "Tag", "phis®);
phis = str2num(get(h_phis, “"String”));
phis = getScanAngle(phis); %validate range between O to 180
h_phis_slider = findobj(gcf, "Tag", "phis_slider");
set(h_phis_slider, "Value®,ceil(phis));
set(h_phis, "String”,num2str(phis));

%Case for theta step size
case “delt”
h_delt = get(Ffindobj(gcf, "Tag","delt"), "Value™);
if h_delt >= 3, warndlg("Setting step size to < 1 degree will greatly
increase computation time!*®,"Warning!®) ; end

%Case for phi step size
case "delp”
h_delp = get(Ffindobj(gcf,"Tag", "delp”),"Value™);
if h_delp >= 3, warndlg("Setting step size to < 1 degree will greatly
increase computation time!*®,*Warning!®) ; end

%Case for Transmit Array parameters
case "Nxt*
h_Nxt = findobj(gcf, "Tag®, "Nxt");
nxt_str = get(h_Nxt,"String”);
Nxt = getNEL(nxt_str);
set(h_Nxt, "String”,num2str(Nxt));
it Nxt ==
dxt = 0;
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set(findobj(gcf,"Tag", "dxt"), "String” ,num2str(dxt));
warndlg("For a single element, array spacing is set to zero.",...
* Array Spacing®,"help®);
elseif Nxt > 1
dxt = str2num(get(findobj(gcf, "Tag", "dxt"),*String”));
if dxt ==
set(Ffindobj(gcf,"Tag", "dxt"), "String”,num2str(1));
warndlg("For the number of elements, array spacing cannot be
Zero.", ...
" Array Spacing®,"help®);
end
end

case "Nzt~
h_Nzt = findobj(gcf, "Tag®, "Nzt");
nzt_str = get(h_Nzt,"String");
Nzt = getNEL(nzt_str);
set(h_Nzt,"String”,num2str(Nzt));
if Nzt == 1
dzt = O;
set(findobj(gcf, "Tag", "dzt"), "String” ,num2str(dzt));
warndlg("For a single element, array spacing is set zero.",...
" Array Spacing®,"help®);
elseif Nzt > 1
dzt = str2num(get(findobj(gcf,"Tag","dzt"),"String”));
if dzt ==
set(Ffindobj(gcf,"Tag", "dzt"),"String”,num2str(1));
warndlg("For the number of elements, array spacing cannot be
zero.", ...
" Array Spacing®,"help®);
end
end

case "dxt-

h_Dxt = Ffindobj(gcf, "Tag", "dxt");

dxt_str = get(h_Dxt,"String");

dxt = getSpacing(dxt_str);

set(h_Dxt, "String”,num2str(dxt));

if dxt ==
Nxt = 1;
set(findobj(gcf, "Tag", "Nxt"), "String”,num2str(Nxt));
warndlg("Number of array elements set to 1."," Number of Array

Elements”, "help®);
end

Nxt = str2num(get(findobj(gcf, "Tag", "Nxt"), "String”));
if dxt >0
if Nxt ==
errordlg("For the spacing indicated, number of elements must be at

least 2.7, ...
“"Number of Elements®,"error®);
dxt = 0;
set(h_Dxt, "String”,num2str(dxt));
end
end

case "dzt-
h_Dzt = findobj(gcf, "Tag","dzt");
dzt_str = get(h_Dzt,"String");
dzt = getSpacing(dzt_str);
set(h_Dzt, "String”,num2str(dzt));
if dzt ==
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Nzt = 1;
set(findobj(gcf,"Tag", "Nzt"), "String” ,num2str(Nzt));
warndlg(*Number of array elements set to 1.%,...
" Number of Array Elements”®,"warn®);
end

Nzt = str2num(get(findobj(gcf, "Tag","Nzt"),"String”));
if dzt > 0
if Nzt ==
errordlg("For the spacing indicated, number of elements must be at
least 2.7°,...
“Number of Elements”®,"error®);

dzt = 0O;
set(h_Dzt, "String”,num2str(dzt));
end
end
case "Mxt*®

h_Mxt = Findobj(gcf, "Tag”, "Mxt");
mxt_str = get(h_Mxt,"String);
Mxt = getNEL(mxt_str);
set(h_Mxt, "String”,num2str(Mxt));
if Mxt ==
Ixt = 0;
set(findobj(gcf,"Tag", "Ixt"),"String” ,num2str(Ixt));
warndlg("For a single element, array spacing is set to zero.",...
" Array Spacing”®,"help®);
elseif Mxt > 1
Ixt = str2num(get(findobj(gcf,"Tag", " Ixt"),"String"));
if Ixt ==
set(Findobj(gcf,"Tag", "Ixt"), "String”,num2str(1));
warndlg("For the number of elements, array spacing cannot be
zero.", ...
" Array Spacing®,"help®);
end
end

case "Mzt*
h_Mzt = findobj(gcf, "Tag", "Mzt");
mzt_str = get(h_Mzt,"String”);
Mzt = getNEL(mzt_str);
set(h_Mzt, "String”,num2str(Mzt));
if Mzt ==
Izt = 0;
set(findobj(gcf, "Tag", " Izt"),"String”,num2str(lzt));
warndlg("For a single element, array spacing is set zero.",...
* Array Spacing®,"help);
elseif Mzt > 1
Izt = str2num(get(findobj(gcf, " Tag", " 1zt"), "String"));
if Izt ==
set(Ffindobj(gcf, "Tag", "1zt"),"String”,num2str(1));
warndlg("For the number of elements, array spacing cannot be
Zero.", ...
" Array Spacing®,"help®);
end
end

case "Ixt*
h_Lxt = findobj(gcf, "Tag™, " Ixt");
Ixt_str = get(h_Lxt,"String”);
Ixt = getSpacing(Ixt_str);
set(h_Lxt, "String”,num2str(Ixt));
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if Ixt ==
Mxt = 1;
set(findobj(gcf,"Tag", "Mxt"), "String” ,num2str(Mxt));
warndlg("Number of array elements set to 1."," Number of Array
Elements®, “help™);
end

Mxt = str2num(get(Ffindobj(gcf,“Tag", "Mxt"),"String"));
if Ixt >0
if Mxt ==
errordlg("For the spacing indicated, number of elements must be at
least 2.7, ...
“Number of Elements®,“error®);
Ixt = 0;
set(h_Lxt, "String”,num2str(Ixt));
end
end

case "lzt-

h_Lzt = findobj(gcf, "Tag", " Izt");

Izt_str = get(h_Lzt,"String”);

Izt = getSpacing(lzt_str);

set(h_Lzt, "String”,num2str(lzt));

if Izt ==
Mzt = 1;
set(findobj(gcf, "Tag", "Mzt"), "String” ,num2str(Mzt));
warndlg("Number of array elements set to 1.°,...

* Number of Array Elements”®,*warn®);
end

Mzt = str2num(get(findobj(gcf, "Tag", "Mzt"), "String”));
iflzt >0
if Mzt ==
errordlg("For the spacing indicated, number of elements must be at
least 2.7, ...
“Number of Elements®,"error®);
Izt = 0;
set(h_Lzt, "String”,num2str(lzt));
end
end

case "txs xdist”
h_txs_xdist = findobj(gcf,"Tag”, "txs_xdist");
txs_xdist_val = get(h_txs_xdist, "Value®);
ixdist = txs_xdist_val;
if (ixdist == 2 | ixdist == 4)
Mxt = str2num(get(findobj(gcf, "Tag", "Mxt"),*String”));
if rem(Mxt,2) ~= 0
set(findobj(gcf,"Tag", "txs_xdist"), "Value®,1);
errordlg("Number of subarrays in X-plane must be even. Change
number of subarrays or select another distribution.”,
" Number of Subarrays®, "error®);
end
end

if (ixdist == 2) |(ixdist == 3) |(ixdist == 4)
set(findobj(gcf, "Tag", "txs_peddbx®), "Enable”,"on");
set(findobj(gcf, "Tag", "txs_nexpx"), "Enable”,"on");

else
set(findobj(gcf, "Tag", "txs_peddbx"), "Enable”,"off");
set(findobj(gcf,"Tag", "txs_nexpx®), “"Enable”, "off");

end
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case "txs_zdist”
h_txs_zdist = findobj(gcf,“Tag", "txs_zdist");
txs_zdist_val = get(h_txs_zdist, "Value®);
izdist = txs_zdist_val;
if (izdist == 2 | izdist == 4)
Mzt = str2num(get(findobj(gcf, "Tag", "Mzt"),"String”));
if rem(Mzt,2) ~= 0
set(findobj(gcf,"Tag", "txs_zdist"), "Value®,1);
errordlg("Number of subarrays in Z-plane must be even. Change
number of subarrays or select another distribution.”,
" Number of Subarrays®, “error®);
end
end

if (izdist == 2) |(izdist == 3) |(izdist == 4)
set(findobj(gcf,"Tag", "txs_peddbz™), "Enable”,"on");
set(findobj(gcf, "Tag", "txs_nexpz"), "Enable”,"on");

else
set(findobj(gcf, "Tag", "txs_peddbz"), "Enable”,"off");
set(findobj(gcf, "Tag", "txs_nexpz®), "Enable”, "off");

end

case "tx _xdist”
h_tx_xdist = findobj(gcf, "Tag", "tx _xdist");
tx_xdist_val = get(h_tx_xdist,  "Value®);
ixdist = tx_xdist_val;
if (ixdist == 2 | ixdist == 4)
Nxt = str2num(get(findobj(gcf, "Tag", "Nxt"),"String”));
if rem(Nxt,2) ~= 0
set(Ffindobj(gcf,"Tag", "tx_xdist"), "Value®,1);
errordlg("Number of elements in X-plane must be even. Change number
of elements or select another distribution.”,
" Number of Subrray Elements®,"error”);
end
end

if (ixdist == 2) |(ixdist == 3) |(ixdist == 4)
set(findobj(gcf, "Tag", "tx_peddbx®), "Enable”,"on");
set(findobj(gcf, "Tag", "tx_nexpx"), "Enable”,"on");

else
set(findobj(gcf,"Tag", "tx_peddbx™), "Enable”, "off");
set(findobj(gcf, "Tag", "tx_nexpx"), "Enable”, "off");

end

case "tx_zdist”
h_tx_zdist = findobj(gcf, "Tag", "tx_zdist");
tx_zdist_val = get(h_tx_zdist, "Value®);
izdist = tx_zdist _val;
if (izdist == 2 | izdist == 4)
Nzt = str2num(get(findobj(gcf, "Tag","Nzt"),"String”));
if rem(Nzt,2) ~= 0
set(findobj(gcf, "Tag", "tx_zdist"),"Value®,1);
errordlg("Number of elements in Z-plane must be even. Change number
of elements or select another distribution.”, .
" Number of Subrray Elements®,"error™);
end
end

if (izdist == 2) |(izdist == 3) |(izdist == 4)
set(findobj(gcf,"Tag", "tx_peddbz®),"Enable®,"on");
set(findobj(gcf,"Tag", "tx_nexpz"), "Enable”,"on");

74



else
set(findobj(gcf, "Tag", "tx_peddbz®), "Enable”, "off");
set(findobj(gcf,"Tag", "tx_nexpz"), “"Enable”,"off");
end

%Case for Receive Array parameters
case "Nxr-

h_Nxr = Ffindobj(gcf, "Tag", "Nxr*");
nxr_str = get(h_Nxr,“String”);
Nxr = getNEL(nxr_str);
set(h_Nxr, *String”,num2str(Nxr));
if Nxr == 1

dxr = 0;

set(findobj(gcf,"Tag", "dxr"), "String” ,num2str(dxr));

warndlg(*For a single element, array spacing is set to zero.",...

" Array Spacing®,"help®);

elseif Nxr > 1

dxr = str2num(get(Ffindobj(gcf, Tag", "dxr"), "String"));

if dxr == 0

set(findobj(gcf, "Tag", "dxr®), "String”,num2str(1));
warndlg("For the number of elements, array spacing cannot be
Zero.", ...
" Array Spacing®,"help®);

end

end

case "Nzr-
h_Nzr = findobj(gcf, "Tag","Nzr-);
nzr_str = get(h_Nzr,"String”);
Nzr = getNEL(nzr_str);
set(h_Nzr, "String”,num2str(Nzr));
if Nzr ==
dzr = 0;
set(findobj(gcf, "Tag", "dzr"), "String” ,num2str(dzr));
warndlg("For a single element, array spacing is set zero.",...
* Array Spacing®,"help®);
elseif Nzr > 1
dzr = str2num(get(findobj(gcf, Tag","dzr"), " String”));
if dzr ==
set(findobj(gcf, "Tag", "dzr®), "String”,num2str(1));
warndlg("For the number of elements, array spacing cannot be
Zero.", ...
" Array Spacing®,"help®);
end
end

case “dxr-

h_Dxr = findobj(gcf, "Tag", "dxr-);

dxr_str = get(h_Dxr,"String");

dxr = getSpacing(dxr_str);

set(h_Dxr, "String”,num2str(dxr));

if dxr ==
Nxr = 1;
set(findobj(gcf,"Tag®, "Nxr"), "String” ,num2str(Nxr));
warndlg(*Number of array elements set to 1."," Number of Array

Elements”, "help™);
end

Nxr = str2num(get(findobj(gcf, "Tag", "Nxr®),*String”));

ifdxr >0
it Nxr ==
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errordlg("For the spacing indicated, number of elements must be at

least 2.7, ...
“Number of Elements®,"error®);
dxr = 0;
set(h_Dxr, "String”,num2str(dxr));
end
end

case “dzr-

h_Dzr = findobj(gcf, " Tag","dzr");

dzr_str = get(h_Dzr,"String");

dzr = getSpacing(dzr_str);

set(h_Dzr, "String”,num2str(dzr));

if dzr ==
Nzr = 1;
set(findobj(gcf, "Tag", "Nzr"), "String”,num2str(Nzr));
warndlg("Number of array elements set to 1.7,...

" Number of Array Elements”®,“warn®);
end

Nzr = str2num(get(findobj(gcf, "Tag", "Nzr"), "String”));
if dzr > 0
if Nzr ==
errordlg("For the spacing indicated, number of elements must be at
least 2.",...
“"Number of Elements®,"error®);
dzr = 0;
set(h_Dzr, "String”,num2str(dzr));
end
end

case "Mxr*
h_Mxr = findobj(gcf, "Tag", "Mxr=);
mxr_str = get(h_Mxr,*String”);
Mxr = getNEL(mxr_str);
set(h_Mxr, *String”,num2str(Mxr));
if Mxr ==
Ixr = 0;
set(findobj(gcf, "Tag", "Ixr"), "String”,num2str(Ixr));
warndlg(“For a single element, array spacing is set to zero.",...
" Array Spacing®,"help®);
elseif Mxr > 1
Ixr = str2num(get(findobj(gcf, "Tag", " Ixr"), "String"));
if Ixr == 0
set(Findobj(gcf,"Tag", "Ixr®), "String”,num2str(1));
warndlg("For the number of elements, array spacing cannot be
Zero.", ...
" Array Spacing®,"help®);
end
end

case "Mzr-

h_Mzr = findobj(gcf, "Tag", "Mzr-);

mzr_str = get(h_Mzr,"String");

Mzr = getNEL(mzr_str);

set(h_Mzr, "String”,num2str(Mzr));

if Mzr ==
Izr = 0;
set(findobj(gcf, "Tag™, " Izr"),"String”,num2str(lzr));
warndlg("For a single element, array spacing is set zero.",...

* Array Spacing®,“helpT);
elseif Mzr > 1
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Izr = str2num(get(findobj(gcf,“Tag","1zr"), "String"));
if lzr ==
set(Ffindobj(gcf, " Tag", " 1zr*),"String”,num2str(1));
warndlg("For the number of elements, array spacing cannot be
Zero.", ...
" Array Spacing®,"help®);
end
end

case "Ixr*

h_Lxr = findobj(gcf, "Tag™, " Ixr-);

IXr_str = get(h_Lxr,"String”);

Ixr = getSpacing(Ixr_str);

set(h_Lxr,"String”,num2str(Ixr));

if Ixr == 0
Mxr = 1;
set(findobj(gcf, "Tag™, "Mxr®), "String”,num2str(Mxr));
warndlg("Number of array elements set to 1.°," Number of Array

Elements”, "help™);
end

Mxr = str2num(get(findobj(gcf, "Tag", "Mxr®),"String”));
if Ixr >0
if Mxr ==
errordlg("For the spacing indicated, number of elements must be at
least 2.7,...
"Number of Elements”®,"error®);
Ixr = 0;
set(h_Lxr, "String”,num2str(Ixr));
end
end

case “lzr*

h_Lzr = findobj(gcf, "Tag®, " 1zr7);

Izr_str = get(h_Lzr,"String");

Izr = getSpacing(lzr_str);

set(h_Lzr,"String”,num2str(l1zr));

it lzr ==
Mzr = 1;
set(findobj(gcf, "Tag", "Mzr*"), "String” ,num2str(Mzr));
warndlg("Number of array elements set to 1.7,...

* Number of Array Elements-®,*warn®);
end

Mzr = str2num(get(findobj(gcf,“Tag","Mzr=),"String"));
if lzr > 0
if Mzr == 1
errordlg("For the spacing indicated, number of elements must be at
least 2.7°,...
"Number of Elements”®,"error®);
Izr = 0;
set(h_Lzr,"String”,num2str(l1zr));
end
end

case "rxs_xdist”
h_rxs_xdist = findobj(gcf,"Tag", "rxs_xdist®);
rxs_xdist_val = get(h_rxs_xdist, "Value®);
ixdist = rxs_xdist_val;
if (ixdist == 2 | ixdist == 4)
Mxr = str2num(get(findobj(gcf,"Tag", "Mxr"),"String”));
if rem(Mxr,2) ~= 0
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set(Ffindobj(gcf, "Tag", "rxs_xdist"), "Value®,1);
errordlg("Number of subarrays in X-plane must be even. Change
number of subarrays or select another distribution.”,
" Number of Subarrays®,"error®);
end
end

if (ixdist == 2) |(ixdist == 3) |(ixdist == 4)
set(findobj(gcf,"Tag", "rxs_peddbx®), "Enable®,"on");
set(findobj(gcf, "Tag", "rxs_nexpx"), "Enable”,"on");

else
set(findobj(gcf, "Tag", "rxs_peddbx"), "Enable”,"off");
set(findobj(gcf,"Tag", "rxs_nexpx®), “Enable”, "off");

end

case "rxs_zdist”
h_rxs_zdist = findobj(gcf,"Tag”, "rxs_zdist");
rxs_zdist_val = get(h_rxs_zdist, "Value®);
izdist = rxs_zdist_val;
if (izdist == 2 | izdist == 4)
Mzr = str2num(get(findobj(gcf,"Tag", "Mzr"), "String”));
if rem(Mzr,2) ~= 0
set(Ffindobj(gcf,"Tag”, "rxs_zdist"), "Value”,1);
errordlg("Number of subarrays in Z-plane must be even. Change
number of subarrays or select another distribution.”,
" Number of Subarrays®,“error®);
end
end

if (izdist == 2) |(izdist == 3) |(izdist == 4)
set(Ffindobj(gcf,"Tag", "rxs_peddbz"), "Enable”,"on");
set(Ffindobj(gcf,"Tag", "rxs_nexpz®), "Enable”,"on");

else
set(findobj(gcf,"Tag", "rxs_peddbz*®), "Enable®, "off");
set(Ffindobj(gcf,"Tag", "rxs_nexpz®), "“Enable”, "off");

end

case “rx_xdist”
h_rx_xdist = findobj(gcf, "Tag", "rx_xdist");
rx_xdist_val = get(h_rx_xdist, "Value®);
ixdist = rx_xdist_val;
if (ixdist == 2 | ixdist == 4)
Nxr = str2num(get(findobj(gcf,"Tag", "Nxr"), "String"));
if rem(Nxr,2) ~= 0
set(findobj(gcf,"Tag", "rx_xdist"), "Value®,1);
errordlg("Number of elements in X-plane must be even. Change number
of elements or select another distribution.”, .
" Number of Subrray Elements®, "error™);
end
end

if (ixdist == 2) |(ixdist == 3) |(ixdist == 4)
set(findobj(gcf,"Tag", "rx_peddbx®), "Enable®,"on");
set(findobj(gcf,"Tag", "rx_nexpx"), "Enable”,"on");

else
set(findobj(gcf, "Tag", "rx_peddbx®), "Enable”, "off");
set(findobj(gcf, "Tag", "rx_nexpx"), “"Enable”,"off");

end

case "rx_zdist”
h_rx_zdist

= findobj(gcf,"Tag™, "rx_zdist");
rx_zdist_val =

get(h_rx_zdist, "Value®);
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izdist = rx_zdist_val;
if (izdist == 2 | izdist == 4)

Nzr = str2num(get(findobj(gcf, "Tag","Nzr"),"String”));

if rem(Nzr,2) ~= 0

set(findobj(gcf, "Tag", "rx_zdist"),"Value®,1);

errordlg("Number of elements in Z-plane must be even. Change number

of elements or select another distribution.”, .
" Number of Subrray Elements®, “error®);

end

end

if (izdist == 2) |(izdist == 3) |(izdist == 4)
set(findobj(gcf, "Tag", "rx_peddbz®),"Enable®,"on");
set(findobj(gcf, "Tag", "rx_nexpz"), "Enable”,"on");

else
set(findobj(gcf, "Tag", "rx_peddbz®),"Enable”, "off");
set(findobj(gcf, "Tag", "rx_nexpz"), "Enable”, "off");

end

%Case Calculate and plot two-way pattern
case "Calculate”

rad=pi/180;
%Get parameters

h_eltype = get(findobj(gcf,"Tag", “eltype”),"Value™);
if h_eltype == 1, diptype = "h"; end

if h_eltype == 2, diptype = "s”; end
if h_eltype == 3, diptype = "i"; end
h_dipdir = get(findobj(gcf, Tag", “dipdir®), Value™);
if h_dipdir == 1, dipdir = "x"; end
if h_dipdir == 2, dipdir = "z"; end
f = (str2num(get(findobj(gcf,"Tag", "frequency”), "String”)))*1e6;

h = str2num(get(findobj(gcf, "Tag", "height™), "String”));
thetas = str2num(get(findobj(gcf, "Tag", "thetas"), "String”));
phis = str2num(get(findobj(gcf, "Tag", "phis®),"String”));
tstart = str2num(get(findobj(gcf, "Tag", "tstart®), "String”));
tstop = str2num(get(findobj(gcf, "Tag", "tstop®), "String"));
pstart = str2num(get(findobj(gcf,“Tag”, "pstart®), "String"));
pstop = str2num(get(findobj(gcf, Tag", "pstop”), "String”));

delt = str2num(get(findobj(gcf, "Tag", "delt"),"String"));
delp = str2num(get(findobj(gcf, Tag", “delp®), "String"));
Nxt = str2num(get(findobj(gcf,"Tag™, "Nxt"),"String”));
Nzt = str2num(get(findobj(gcf, "Tag", "Nzt"),"String”));
dxt = str2num(get(findobj(gcf, "Tag", "dxt"),"String”));
dzt = str2num(get(findobj(gcf,“Tag","dzt"), "String”));
Mxt = str2num(get(findobj(gcf, "Tag", "Mxt"),"String”));
Mzt = str2num(get(findobj(gcf,“Tag","Mzt"),"String”));
Ixt = str2num(get(findobj(gcf,"Tag", " Ixt"),"String"));
Izt = str2num(get(findobj(gcf, "Tag", "1zt"),"String"));
Nxr = str2num(get(findobj(gcf,“Tag™, "Nxr"),"String”));
Nzr = str2num(get(findobj(gcf, "Tag", "Nzr"), "String”));
dxr = str2num(get(findobj(gcf,"Tag", "dxr"),"String”));
dzr = str2num(get(findobj(gcf,"Tag","dzr"),"String”));
Mxr = str2num(get(findobj(gcf,"Tag", "Mxr"),"String”));
Mzr = str2num(get(findobj(gcf,"Tag", "Mzr"), "String”));
Ixr = str2num(get(findobj(gcf, "Tag", "Ixr"),"String"));
Izr = str2num(get(findobj(gcf,"Tag","1zr"),"String"));

txs_xdist = get(Findobj(gcf,"Tag", "txs_xdist"),"Value®);
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txs_peddbxval = get(findobj(gcf, "Tag", "txs peddbx®), *Value®);
if txs_peddbxval==1, txs_peddbx=15; end
if txs_peddbxval==2, txs_peddbx=20; end
if txs_peddbxval==3, txs_peddbx=25; end
if txs_peddbxval==4, txs_peddbx=30; end
if txs_peddbxval==5, txs_peddbx=35; end
if txs_peddbxval==6, txs_peddbx=40; end
if txs_peddbxval==7, txs_peddbx=45; end
iT txs_peddbxval==8, txs_peddbx=50; end
txs_nexpx = get(Findobj(gcf,“"Tag", "txs_nexpx"), "Value);

txs_zdist = get(Findobj(gcf,"Tag", "txs_zdist"),"Value®);
txs_peddbzval = get(findobj(gcf,"Tag", "txs peddbz®), *Value®);
if txs_peddbzval==1, txs_peddbz=15; end
iT txs_peddbzval==2, txs_peddbz=20; end
if txs_peddbzval==3, txs_peddbz=25; end
iT txs_peddbzval==4, txs_peddbz=30; end
if txs_peddbzval==5, txs_peddbz=35; end
iT txs_peddbzval==6, txs_peddbz=40; end
if txs_peddbzval==7, txs_peddbz=45; end
if txs_peddbzval==8, txs_peddbz=50; end
txs_nexpz = get(findobj(gcf,"Tag", "txs _nexpz"), "Value®);

tx_xdist = get(Ffindobj(gcf, "Tag", "tx _xdist"),"Value™);
tx_peddbxval = get(findobj(gcf,"Tag”, "tx_peddbx"),"Value®);
if tx_peddbxval==1, tx_peddbx=15; end
if tx_peddbxval==2, tx_peddbx=20; end
if tx_peddbxval==3, tx_peddbx=25; end
if tx_peddbxval==4, tx_peddbx=30; end
if tx_peddbxval==5, tx_peddbx=35; end
if tx_peddbxval==6, tx_peddbx=40; end
if tx_peddbxval==7, tx_peddbx=45; end
if tx_peddbxval==8, tx_peddbx=50; end
tx_nexpx = get(findobj(gcf, "Tag", "tx_nexpx®),  Value™);

tx_zdist = get(findobj(gcf,"Tag™, "tx_zdist"), "Value™);
tx_peddbzval = get(findobj(gcf, "Tag", "tx_peddbz®), "Value®);
ifT tx_peddbzval==1, tx_peddbz=15; end
if tx_peddbzval==2, tx_peddbz=20; end
ifT tx_peddbzval==3, tx_peddbz=25; end
if tx_peddbzval==4, tx_peddbz=30; end
ifT tx_peddbzval==5, tx_peddbz=35; end
if tx_peddbzval==6, tx_peddbz=40; end
ifT tx_peddbzval==7, tx_peddbz=45; end
if tx_peddbzval==8, tx_peddbz=50; end
tx_nexpz = get(Ffindobj(gcf, "Tag", "tx _nexpz®), "Value™);

txs_ampx = getamplitudes(Mxt,txs_xdist,txs_peddbx,txs_nexpx);
txs_ampz = getamplitudes(Mzt,txs_zdist,txs_peddbz,txs_nhexpz);
tx_ampx = getamplitudes(Nxt,tx_xdist,tx_peddbx,tx_nexpx);
tx_ampz = getamplitudes(Nzt,tx_zdist,tx_peddbz,tx_nexpz);

rxs_xdist = get(findobj(gcf,"Tag", "rxs_xdist"),"Value®);
rxs_peddbxval = get(findobj(gcf, "Tag", "rxs_peddbx"), "Value®);

if rxs_peddbxval==1, rxs_peddbx=15; end

if rxs_peddbxval==2, rxs_peddbx=20; end

if rxs_peddbxval==3, rxs_peddbx=25; end

if rxs_peddbxval==4, rxs_peddbx=30; end

iT rxs_peddbxval==5, rxs_peddbx=35; end

ifT rxs_peddbxval==6, rxs_peddbx=40; end

iT rxs_peddbxval==7, rxs_peddbx=45; end

ifT rxs_peddbxval==8, rxs_peddbx=50; end
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rxs_nexpx = get(findobj(gcf, Tag", "rxs_nexpx"), "Value®);

rxs_zdist = get(findobj(gcf,"Tag", "rxs_zdist"), "Value®);
rxs_peddbzval = get(findobj(gcf, "Tag", "rxs_peddbz®), "Value™);
if rxs_peddbzval==1, rxs_peddbz=15; end
if rxs_peddbzval==2, rxs_peddbz=20; end
if rxs_peddbzval==3, rxs_peddbz=25; end
ifT rxs_peddbzval==4, rxs_peddbz=30; end
iT rxs_peddbzval==5, rxs_peddbz=35; end
ifT rxs_peddbzval==6, rxs_peddbz=40; end
iT rxs_peddbzval==7, rxs_peddbz=45; end
ifT rxs_peddbzval==8, rxs_peddbz=50; end
rxs_nexpz = get(findobj(gcf,"Tag", "rxs_nexpz®),"Value®);

rx_xdist = get(findobj(gcf, “Tag", "rx_xdist"), "Value®);
rx_peddbxval = get(findobj(gcf, "Tag", "rx_peddbx®),"Value®);
iT rx_peddbxval==1, rx_peddbx=15; end
ifT rx_peddbxval==2, rx_peddbx=20; end
iT rx_peddbxval==3, rx_peddbx=25; end
if rx_peddbxval==4, rx_peddbx=30; end
if rx_peddbxval==5, rx_peddbx=35; end
if rx_peddbxval==6, rx_peddbx=40; end
if rx_peddbxval==7, rx_peddbx=45; end
if rx_peddbxval==8, rx_peddbx=50; end
rx_nexpx = get(findobj(gcf,“"Tag”, "rx_nexpx"), "Value®);

rx_zdist = get(findobj(gcf,"Tag","rx_zdist"), "Value™);
rx_peddbzval = get(findobj(gcf, Tag", "rx_peddbz"), “"Value®);
if rx_peddbzval==1, rx_peddbz=15; end
if rx_peddbzval==2, rx_peddbz=20; end
if rx_peddbzval==3, rx_peddbz=25; end
if rx_peddbzval==4, rx_peddbz=30; end
if rx_peddbzval==5, rx_peddbz=35; end
it rx_peddbzval==6, rx_peddbz=40; end
if rx_peddbzval==7, rx_peddbz=45; end
iT rx_peddbzval==8, rx_peddbz=50; end
rx_nexpz = get(Ffindobj(gcf, "Tag", "rx_nexpz"), "Value®);

rxs_ampx = getamplitudes(Mxr,rxs_xdist,rxs_peddbx, rxs_nexpx);
rxs_ampz = getamplitudes(Mzr,rxs_zdist,rxs_peddbz, rxs_nexpz);
rx_ampx = getamplitudes(Nxr,rx_xdist, rx_peddbx, rx_nexpx);
rx_ampz = getamplitudes(Nzr,rx_zdist,rx_peddbz,rx_nexpz);

% Compute CAF of Transmit DSA
if diptype == "h" %compute for half wave dipoles

[TxSAFtheta, TxSAFphi , TxDAFtheta, TxDAFphi ,Ut , Wt]=caf_hdip2("t",f,dxt,Nxt,dzt,Nzt
, Ixt,Mxt, 1zt,Mzt,h,dipdir,thetas,phis, tstart, tstop,pstart,pstop,delt,delp,txs_a
mpX, tXs_ampz, tx_ampx,tx_ampz);

end

if diptype == "s" %compute for short dipoles

[TxSAFtheta, TxSAFphi , TxDAFtheta, TxDAFphi ,Ut,Wt]=caf_sdip2("t",f,dxt,Nxt,dzt,Nzt
, Ixt,Mxt, Izt ,Mzt,h,dipdir,thetas,phis, tstart, tstop,pstart,pstop,delt,delp,txs_a
mpXx, tXxs_ampz, tx_ampx,tx_ampz);

end

it diptype == "i" %compute for isotropic elements

[TxSAFtheta, TxSAFphi , TxDAFtheta, TxDAFphi ,Ut,Wt]=caf_iso2("t",f,dxt,Nxt,dzt,Nzt,
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Ixt,Mxt, 1zt,Mzt,h, thetas,phis,tstart,tstop,pstart,pstop,delt,delp,txs_ampx,txs_
ampz, tx_ampx,tx_ampz);
end

% Normalize transmit DSA pattern

MAXtx=max ([max(max(abs(TxDAFtheta))) ,max(max(abs(TxDAFphi)))1):;
TXDAFt_norm=abs(TxDAFtheta)/MAXtx; %Find magnitude and normalize
TXDAFp_norm=abs(TxXDAFphi)/MAXtX;
TxXDAFt_db=20*10g10(TxDAFt_norm); %Compute in dB
TXDAFp_db=20*10g10(TxDAFp_norm);

% Compute CAF of Receive DSA
ifT diptype == "h" %Compute for half wave dipoles

[RxSAFtheta,RxSAFphi ,RxDAFtheta,RxDAFphi ,Ur ,Wr]=caf_hdip2(°r*,f,dxr ,Nxr,dzr ,Nzr
, Ixr ,Mxr,1zr ,Mzr,h,dipdir,thetas,phis, tstart, tstop,pstart,pstop,delt,delp,rxs_a
mpX, rXs_ampz, rx_ampx, rx_ampz) ;

end

if diptype == "s" %Compute for short dipoles

[RxSAFtheta,RxSAFphi ,RxDAFtheta,RxDAFphi ,Ur ,Wr]=caf_sdip2(°"r~,f,dxr ,Nxr,dzr ,Nzr
, Ixr ,Mxr,1zr,Mzr,h,dipdir,thetas,phis, tstart, tstop,pstart,pstop,delt,delp,rxs_a
mpX, rXs_ampz, rx_ampx, rx_ampz) ;

end

if diptype == "i" %Compute for isotropic elements

[RxSAFtheta,RxSAFphi ,RxDAFtheta,RxDAFphi ,Ur ,Wr]=caf_iso2("r",f,dxr,Nxr,dzr ,Nzr,
Ixr,Mxr,l1zr,Mzr, h,thetas,phis,tstart,tstop,pstart,pstop,delt,delp,rxs_ampx,rxs_
ampz, rx_ampx, rx_ampz);

end

% Normalize receive DSA pattern
MAXrx=max([max(max(abs(RxDAFtheta))) ,max(max(abs(RxDAFphi)))1);
RxDAFt_norm=abs(RxDAFtheta)/MAXrx; %Find magnitude and normalize
RxDAFp_norm=abs(RxXDAFphi)/MAXrx;
RxDAFt_db=20*10g10(RxDAFt_norm); %Compute in dB
RxDAFp_db=20*10g10(RXDAFp_norm);

% Compute Two-way Pattern of Transmit and Receive DSAs
Two_way_ DAFt=TxDAFtheta.*RxDAFtheta;
Two_way_DAFp=TxDAFphi . *RxDAFphi ;

MAXtw=max ([max(max(abs(Two_way_DAFt))) ,max(max(abs(Two_way DAFp)))1):
Two_way_DAFt_norm=abs(Two_way_ DAFt)/MAXtw; %Normalized theta pattern
Two_way_DAFp_norm=abs(Two_way_DAFp)/MAXtw; %Normalized phi pattern

Two_way_ DAFt_db=20*1og10(Two_way DAFt_norm); %Compute in dB
Two_way_DAFp_db=20*1og10(Two_way_DAFp_norm);

%Export dsa configuration to file dsaconfig.m
save dsaconfig T diptype dipdir h delt delp thetas phis ...
tstart tstop pstart pstop ...
Nxt Nzt dxt dzt Mxt Mzt Ixt Izt ...
Nxr Nzr dxr dzr Mxr Mzr Ixr lzr ...
txs_xdist txs_peddbx txs_nexpx ...
txs_zdist txs_peddbz txs_nexpz ...
tx xdist tx_peddbx tx _nexpx ...
tx_zdist tx_peddbz tx_nexpz ...
rxs_xdist rxs_peddbx rxs nexpx ...
rxs_zdist rxs_peddbz rxs_nexpz ...
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rx_xdist rx_peddbx rx_nexpx ...
rx_zdist rx_peddbz rx_nexpz ...

%Export dsa pattern data to file dsapattern.m
save dsapattern Ur Wr TxDAFt_db TxDAFp_db RxDAFt_db RxDAFp_db. ..
Two_way DAFt_db Two_way_ DAFp_db

%Set plot dynamic range to pmin
pmin = -80; %Set the pmin value (dB)
ip = floor((pstop-pstart)/delp)+1;
it = floor((tstop-tstart)/delt)+1;
for i1 = 1:ip
for 12 = 1:it
theta(il,i2) = tstart + (i2-1)*delt;
phi(il,i2) = pstart + (il-1)*delp;
end
end

if ip == 1 %Plot phi cut
figure(l),clf
subplot(211)
plot(theta,TxDAFt_db),grid %Plot transmit DSA theta component
axis([tstart,tstop,pmin,0])
title(["Transmit DSA Pattern, \phi=",num2str(pstart),“”o cut"])
xlabel ("Pattern Angle, \theta (deg)")
ylabel ("Normalized |F_\theta| (dB)")
subplot(212)
plot(theta,TxDAFp_db),grid %Plot transmit DSA phi component
axis([tstart,tstop,pmin,0])
title(["Transmit DSA Pattern, \phi=",num2str(pstart),“”o cut"])
xlabel ("Pattern Angle, \theta (deg)")
ylabel ("*Normalized |F_\phi|] (dB)*)

figure(2),clf

subplot(211)

plot(theta,RxDAFt_db),grid %Plot receive DSA theta component
axis([tstart,tstop,pmin,0])

title(["Receive DSA Pattern, \phi=",num2str(pstart),"”o cut"])
xlabel ("Pattern Angle, \theta (deg)~)

ylabel ("Normalized |F_\theta| (dB)")

subplot(212)

plot(theta,RxDAFp_db),grid %Plot receive DSA phi component
axis([tstart,tstop,pmin,0])

title(["Receive DSA Pattern, \phi=",num2str(pstart),"”o cut"])
xlabel ("Pattern Angle, \theta (deg)")

ylabel ("*Normalized |F_\phi] (dB)*)

figure(3d),clf

subplot(211)

plot(theta,Two_way DAFt_db),grid %Plot two-way theta component

axis([tstart,tstop,pmin,0])

title(["Two-way Pattern, \phi=",num2str(pstart), "o cut™])

xlabel ("Pattern Angle, \theta (deg)")

ylabel ("Normalized |F_\theta| (dB)")

subplot(212)

plot(theta,Two_way DAFp_db),grid %Plot two-way phi component

axis([tstart,tstop,pmin,0])

title(["Two-way Pattern |F_n_o_r_m(\phi)],
\phi=",num2str(pstart), "o cut"])

xlabel ("Pattern Angle, \theta (deg)")

ylabel ("Normalized |F_\phi| (dB)")
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end

if it == 1 %Plot theta cut

end

figure(l),clf

subplot(211)

plot(phi,TxDAFt_db),grid %Plot transmit DSA theta component
axis([pstart,pstop,pmin,0])

title(["Transmit DSA Pattern, \theta=",num2str(tstart), "o cut"])
xlabel ("Pattern Angle, \phi (deg)*®)

ylabel ("Normalized |F_\theta| (dB)")

subplot(212)

plot(phi,TxDAFp_db),grid %Plot transmit DSA phi component
axis([pstart,pstop,pmin,0])

title(["Transmit DSA Pattern, \theta=",num2str(tstart), "o cut"])
xlabel ("Pattern Angle, \phi (deg)*®)

ylabel ("Normalized |F_\phi| (dB)")

figure(2),clf

subplot(211)

plot(phi ,RxDAFt_db),grid %Plot receive DSA theta component
axis([pstart,pstop,pmin,0])

title(["Receive DSA Pattern, \theta=",num2str(tstart),"”o cut"])
xlabel ("Pattern Angle, \phi (deg)®)

ylabel ("Normalized |F_\theta| (dB)")

subplot(212)

plot(phi,RxDAFp_db),grid %Plot receive DSA phi component
axis([pstart,pstop,pmin,0])

title(["Receive DSA Pattern, \theta=",num2str(tstart), "o cut"])
xlabel ("Pattern Angle, \phi (deg)®)

ylabel ("*Normalized |F_\phi|] (dB)*)

figure(3),clf

subplot(211)

plot(phi,Two_way DAFt_db),grid %Plot two-way theta component
axis([pstart,pstop,pmin,0])

title(["Two-way Pattern, \theta=",num2str(tstart),"”o cut"])
xlabel ("Pattern Angle, \phi (deg)")

ylabel ("Normalized |F_\theta| (dB)")

subplot(212)

plot(phi,Two_way DAFp_db),grid %Plot two-way phi component
axis([pstart,pstop,pmin,0])

title(["Two-way Pattern, \theta=",num2str(tstart),"”o cut"])
xlabel ("Pattern Angle, \phi (deg)")

ylabel ("Normalized |F_\phi| (dB)")

if ip>1 & it>1

for il = 1:ip %Set mesh plot dynamic range to pmin
for 12 = 1:it

iT TXDAFt_db(il,i2) < pmin,...
TxDAFt_db(il,i2) = pmin; end
iT TxXDAFp_db(il,i2) < pmin,...
TxDAFp_db(il,i2) = pmin; end
iT RxDAFt_db(il,i2) < pmin,...
RxDAFt_db(il,i2) = pmin; end
iT RxDAFp_db(il,i2) < pmin,...
RxDAFp_db(il,i2) = pmin; end

if Two_way DAFt_db(il,i2)

< pmin, ...
Two_way_DAFt_db(il,i2) = pmin; end
ifT Two_way DAFp_db(il,i2) < pmin,...
Two_way_DAFp_db(il,i2) = pmin; end
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end
end

figure(l),clf %Plot theta component of transmit array
meshc(Ut,Wt, TxDAFt_db),grid,axis([-1 1 -1 1 pmin,0]),grid
axis square

xlabel ("U = sin\theta*cos\phi*®)

ylabel ("W = cos\theta®)

zlabel ("Normalized |F_\theta] (dB)")

view(45,45)

title("Transmit DSA Pattern®)

figure(2),clf %Plot phi component of transmit array
mesh(Ut,Wt,TxDAFp_db) ,grid,axis([-1 1 -1 1 pmin,0]),grid
axis square

xlabel ("U = sin\theta*cos\phi~)

ylabel ("W = cos\theta")

zlabel ("Normalized |F_\phi] (dB)")

view(45,45)

title("Transmit DSA Pattern”)

figure(3),clf %Plot theta component of receive array
meshc(Ur,Wr ,RxDAFt_db),grid,axis([-1 1 -1 1 pmin,0]),grid
axis square

xlabel ("U = sin\theta*cos\phi~)

ylabel ("W = cos\theta®)

zlabel ("Normalized |F_\theta] (dB)")

view(45,45)

title("Receive DSA Pattern®)

figure(4),clf %Plot phi component of receive array
meshc(Ur,Wr ,RxDAFp_db),grid,axis([-1 1 -1 1 pmin,0]),grid
axis square

xlabel ("U = sin\theta*cos\phi~)

ylabel ("W = cos\theta®)

zlabel ("Normalized |F_\phi] (dB)")

view(45,45)

title("Receive DSA Pattern™)

figure(5),clf %Plot theta component of two-way pattern
meshc(Ur,Wr,Two_way_DAFt_db),grid,axis([-1 1 -1 1 pmin,0]),grid
axis square

xlabel ("U = sin\theta*cos\phi~)

ylabel ("W = cos\theta")

zlabel ("Normalized |F_\theta] (dB)")

view(45,45)

title("Two-way Pattern®)

figure(6),clf %Plot phi component of two-way pattern
meshc(Ur,Wr,Two_way_ DAFp_db),grid,axis([-1 1 -1 1 pmin,0]),grid
axis square
xlabel ("U = sin\theta*cos\phi~)
ylabel ("W = cos\theta®)
zlabel ("Normalized |F_\phi] (dB)")
view(45,45)
title("Two-way Pattern®)
end

%end case Calculate

%Case calculate two-way gain of XMTR and RCVR arrays
case "Gain”
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%Get user input for integration intervals for theta and phi
prompt = {"Number of intervals for theta:",...
"Number of intervals for phi:"};
dig_title = "Set number of integration points”;
num_lines = 1;
def = {"47,"4"};
answer = inputdlg(prompt,dlg_title,num_lines,def);
% set the number of integration intervals (nt points per interval)
ndivt=str2num(answer{1});
ndivp=str2num(answer{2});

%Get parameters

h_eltype = get(findobj(gcf, "Tag", "eltype”), "Value®);
it h_eltype == 1, diptype = "h"; end

f h_eltype == 2, diptype = "s"; end

f h_eltype == 3, diptype = "i"; end
dir = get(findobj(gcf, "Tag", "dipdir~), "Value®);

-0 -

h_di

f h_dipdir == 1, dipdir = "x"; end

if h_dipdir == 2, dipdir = "z"; end
f = (str2num(get(findobj(gcf,"Tag", "frequency”), "String”)))*1e6;
h = (str2num(get(findobj(gcf,"Tag", “height®), "String)));

thetas = (str2num(get(findobj(gcf, "Tag”, "thetas"),"String")));
phis = (str2num(get(findobj(gcf, "Tag", "phis®), "String")));

Nxt = str2num(get(findobj(gcf,“"Tag™, "Nxt"),"String”));
Nzt = str2num(get(findobj(gcf, "Tag", "Nzt"),"String”));
dxt = str2num(get(findobj(gcf,"Tag", "dxt"),"String”));
dzt = str2num(get(findobj(gcf,"Tag","dzt"),"String”));
Mxt = str2num(get(findobj(gcf,“Tag", "Mxt"),"String”));
Mzt = str2num(get(findobj(gcf,"Tag", "Mzt"),"String”));
Ixt = str2num(get(findobj(gcf, "Tag", "Ixt"),"String"));
Izt = str2num(get(findobj(gcf,"Tag", " 1zt"),"String"));
Nxr = str2num(get(findobj(gcf, "Tag", "Nxr"),"String”));
Nzr = str2num(get(findobj(gcf,"Tag™, "Nzr"),"String”));
dxr = str2num(get(findobj(gcf,"Tag", "dxr"),"String”));
dzr = str2num(get(findobj(gcf, Tag", "dzr®), "String”));
Mxr = str2num(get(findobj(gcf, "Tag", "Mxr"),"String”));
Mzr = str2num(get(findobj(gcf,"Tag","Mzr"),"String”));
Ixr = str2num(get(findobj(gcf,"Tag","Ixr"),"String"));
Izr = str2num(get(findobj(gcf, "Tag", "1zr"),"String"));

txs_xdist = get(findobj(gcf,“Tag", "txs_xdist®), "Value®);
txs_peddbxval = get(findobj(gcf, "Tag", "txs_peddbx"), "Value®);
if txs_peddbxval==1, txs_peddbx=15; end
if txs_peddbxval==2, txs_peddbx=20; end
if txs_peddbxval==3, txs_peddbx=25; end
if txs_peddbxval==4, txs_peddbx=30; end
if txs_peddbxval==5, txs_peddbx=35; end
if txs_peddbxval==6, txs_peddbx=40; end
if txs_peddbxval==7, txs_peddbx=45; end
if txs_peddbxval==8, txs_peddbx=50; end
txs_nexpx = get(Ffindobj(gcf,“"Tag”, "txs_nexpx"), "Value®);

txs_zdist = get(findobj(gcf,"Tag", "txs_zdist"), "Value®);
txs_peddbzval = get(findobj(gcf, Tag", "txs peddbz®), "Value®);
if txs_peddbzval==1, txs_peddbz=15; end
iT txs_peddbzval==2, txs_peddbz=20; end
if txs_peddbzval==3, txs_peddbz=25; end
ifT txs_peddbzval==4, txs_peddbz=30; end
if txs_peddbzval==5, txs_peddbz=35; end
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if txs_peddbzval==6, txs_peddbz=40; end
if txs_peddbzval==7, txs_peddbz=45; end
if txs_peddbzval==8, txs_peddbz=50; end
txs_nexpz = get(findobj(gcf,"Tag", "txs nexpz"), "Value™);

tx_xdist = get(findobj(gcf, "Tag", "tx xdist"), "Value™);
tx_peddbxval = get(findobj(gcf, "Tag", "tx_peddbx"),"Value®);
if tx_peddbxval==1, tx_peddbx=15; end
iT tx_peddbxval==2, tx_peddbx=20; end
if tx_peddbxval==3, tx_peddbx=25; end
ifT tx_peddbxval==4, tx_peddbx=30; end
if tx_peddbxval==5, tx_peddbx=35; end
iT tx_peddbxval==6, tx_peddbx=40; end
if tx_peddbxval==7, tx_peddbx=45; end
iT tx_peddbxval==8, tx_peddbx=50; end
tx_nexpx = get(findobj(gcf,"Tag", "tx_nexpx"), "Value®);

tx_zdist = get(findobj(gcf,"Tag", "tx_zdist"), "Value®);
tx_peddbzval = get(findobj(gcf, "Tag", "tx_peddbz™), "Value”);
if tx_peddbzval==1, tx_peddbz=15; end
if tx_peddbzval==2, tx_peddbz=20; end
if tx_peddbzval==3, tx_peddbz=25; end
if tx_peddbzval==4, tx_peddbz=30; end
if tx_peddbzval==5, tx_peddbz=35; end
if tx_peddbzval==6, tx_peddbz=40; end
if tx_peddbzval==7, tx_peddbz=45; end
if tx_peddbzval==8, tx_peddbz=50; end
tx_nexpz = get(Findobj(gcf, "Tag", "tx _nexpz®), "Value™);

txs_ampx = getamplitudes(Mxt,txs_xdist,txs_peddbx,txs_nexpx);
txs_ampz = getamplitudes(Mzt,txs_zdist, txs_peddbz,txs_nexpz);
tx_ampx = getamplitudes(Nxt,tx_xdist,tx_peddbx,tx_nexpx);
tx_ampz = getamplitudes(Nzt,tx_zdist,tx_peddbz,tx_nexpz);

rxs_xdist = get(Ffindobj(gcf,"Tag", "rxs_xdist"),"Value®);
rxs_peddbxval = get(findobj(gcf, "Tag", "rxs_peddbx”),"Value®);
ifT rxs_peddbxval==1, rxs_peddbx=15; end
iT rxs_peddbxval==2, rxs_peddbx=20; end
ifT rxs_peddbxval==3, rxs_peddbx=25; end
iT rxs_peddbxval==4, rxs_peddbx=30; end
ifT rxs_peddbxval==5, rxs_peddbx=35; end
iT rxs_peddbxval==6, rxs_peddbx=40; end
ifT rxs_peddbxval==7, rxs_peddbx=45; end
iT rxs_peddbxval==8, rxs_peddbx=50; end
rxs_nexpx = get(Ffindobj(gcf,"Tag", "rxs_nexpx"),"Value®);

rxs_zdist = get(findobj(gcf,"Tag", "rxs_zdist"), "Value®);
rxs_peddbzval = get(findobj(gcf, "Tag", "rxs_peddbz®), "Value™);
if rxs_peddbzval==1, rxs_peddbz=15; end
if rxs_peddbzval==2, rxs_peddbz=20; end
if rxs_peddbzval==3, rxs_peddbz=25; end
if rxs_peddbzval==4, rxs_peddbz=30; end
if rxs_peddbzval==5, rxs_peddbz=35; end
if rxs_peddbzval==6, rxs_peddbz=40; end
if rxs_peddbzval==7, rxs_peddbz=45; end
if rxs_peddbzval==8, rxs_peddbz=50; end
rxs_nexpz = get(findobj(gcf,"Tag", "rxs_nexpz"), "Value®);

rx_xdist = get(findobj(gcf, “Tag", "rx_xdist"), "Value®);
rx_peddbxval = get(findobj(gcf, "Tag", "rx_peddbx®),"Value®);
iT rx_peddbxval==1, rx_peddbx=15; end
ifT rx_peddbxval==2, rx_peddbx=20; end
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T rx_peddbxval==3, rx_peddbx=25; end
T rx_peddbxval==4, rx_peddbx=30; end
T rx_peddbxval==5, rx_peddbx=35; end
f
f

rx_peddbxval==6, rx_peddbx=40; end
rx_peddbxval==7, rx_peddbx=45; end

if rx_peddbxval==8, rx_peddbx=50; end
rx_nexpx = get(findobj(gcf,“"Tag", "rx_nexpx-), "Value®);

rx_zdist = get(findobj(gcf, “Tag", "rx_zdist"), "Value®);
rx_peddbzval = get(findobj(gcf, "Tag", "rx_peddbz®), "Value®);
it rx_peddbzval==1, rx_peddbz=15; end
if rx_peddbzval==2, rx_peddbz=20; end
it rx_peddbzval==3, rx_peddbz=25; end
if rx_peddbzval==4, rx_peddbz=30; end
it rx_peddbzval==5, rx_peddbz=35; end
if rx_peddbzval==6, rx_peddbz=40; end
iT rx_peddbzval==7, rx_peddbz=45; end
if rx_peddbzval==8, rx_peddbz=50; end
rx_nexpz = get(findobj(gcf,"Tag™, "rx_nexpz"), "Value™);

rxs_ampx = getamplitudes(Mxr,rxs_xdist,rxs_peddbx, rxs_nexpx);
rxs_ampz = getamplitudes(Mzr,rxs_zdist,rxs_peddbz,rxs_nexpz);
rx_ampx = getamplitudes(Nxr,rx_xdist,rx_peddbx, rx_nexpx);
rx_ampz = getamplitudes(Nzr,rx_zdist,rx_peddbz,rx_nexpz);

% Compute Gain of Transmit DSA

[txgain,txemax,txprad]=compute_gain("t",f,dxt,Nxt,dzt Nzt, Ixt ,Mxt,lzt,Mzt, h,dip
type,dipdir,thetas,phis,txs_ampx,txs_ampz,tx_ampx,tx_ampz,ndivt,ndivp);
% Compute Gain of Receive DSA

[rxgain, rxemax, rxprad]=compute_gain(“r=,f,dxr ,Nxr,dzr ,Nzr, Ixr Mxr,lzr ,Mzr,h,dip
type,dipdir,thetas,phis, rxs_ampx, rxs_ampz, rx_ampx, rx_ampz,ndivt,ndivp);

txgdb=10*1og10(txgain);

disp(["total radiated power, prad = ",num2str(txprad)])

disp(["max Ffield value of transmit array, V/m = ",num2str(txemax)])
disp(["transmit gain = ",num2str(txgain),”, 1in dB = ",num2str(txgdb)])

rxgdb=10*log10(rxgain);
disp(["max Ffield value of receive array, V/m = ",num2str(rxemax)])
disp(["receive gain = ",num2str(txgain),”, in dB = " ,num2str(rxgdb)])

% Compute two-way gain
tway_gain=txgain*rxgain;
tway_gaindb=10*logl0(tway_gain);

nl = sprintf("\n");

msgl = “Transmit Array :--;
msg2 = [“Numeric gain = ",num2str(txgain),...
*, Gain in dB = " ,num2str(txgdb)," dB"];
msg3 = "Receive Array :";
msg4 = [“Numeric gain = ",num2str(rxgain), ...
", Gain in dB = ",num2str(rxgdb), " dB"];
msg5 = ["Two-way numeric gain = ",num2str(tway_gain),nl,__.

"Two-way Gain in dB = " ,num2str(tway_gaindb)," dB"];

h = msgbox([msgl nl msg2 nl nl msg3 nl msg4 nl nl msg5],.---
"Gain Results™);

%end case Gain
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case “Close”
h_figs = get(0, "children®);
for fig = h_figs”
delete(fig);
end

end %switch
%%9%6%%%%%%%%%% %% %% %% %%%%%Functions For input val idation%%%%%%%%%%%%%%%%%%%%%

% validates Frequency
function freq_out = getFreq(freq)

temp = str2num(freq);

if (isempty(temp)) | (temp <= 0)
errordlg("Enter a postive number.", ...

"Frequency setting”, "error®);

temp = 100; % default set to 100

end

freq_out = temp;

% end getFreq

% validates phi starting angle
function o_pstart = getPStart(start)

templ
temp2

= str2num(start);
= str2num(get(findobj(gcf, "Tag", "pstop”), "String"));
ifT (isempty(templ)) | templ < O | templ > 180
errordlg("Enter a Phi Starting angle between 0 and 180 degrees.”, ...
"Angle Status®, “error");
templ = 90; % default phi start angle
elseif (start == "i" | start == "j")
errordlg("Enter a Phi Starting angle between 0 and 180 degrees.”, ...
"Angle Status®, “error");
templ = 0; % default phi start angle
elseif templ > temp2 % phi start greater than phi stop angle
errordlg("Phi starting angle is greater than ending angle!”, ...
"Angle Status®,"error");
templ = 0; % default phi starting angle
end
o_pstart = templ;
% end getPStart

% validates phi ending angle
function o_pstop = getPStop(stop)

templ
temp2

str2num(stop);
str2num(get(findobj(gcf, "Tag", "pstart”), "String”));

ifT (isempty(templ)) | templ < O | templ > 180
errordlg("Enter a Phi ending angle between starting angle and 180
degrees.", ...
"Angle Status®, “error");
templ = 180;
elseif temp2 > templ % phi start greater than phi stop angle
errordlg("Phi ending angle is less than starting angle!”™, ...
"Angle Status®,"error”);
templ = 180; % default phi ending angle
elseif (stop == "i" | stop == ")
errordlg("Enter a Phi ending angle between 0 and 180 degrees.", ...
"Angle Status®, “error");
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templ = 180; % default phi ending angle
end
Oo_pstop = templ;
% end getPStop

% validates theta starting angle
function o_tstart = getTStart(start)

templ
temp2

= str2num(start);
= str2num(get(findobj(gcf,"Tag", “tstop”), "String”));
if (isempty(templ)) | templ < O | templ > 180
errordlg("Enter a Theta Starting angle between 0 and 180 degrees.", ...
"Angle Status®, “error");
templ = 0; % default theta start angle
elseif (start == "i" | start == "j")
errordlg("Enter a Theta Starting angle between 0 and 180 degrees.", ...
"Angle Status®, “error");
templ = 0; % default theta start angle
elseif templ > temp2 % theta start greater than theta stop angle
errordlg("Theta starting angle is greater than ending angle!®, ...
"Angle Status®,"error”);
templ = 0; % default theta ending angle
end
o_tstart = templ;
% end getTStart

% validates theta ending angle
function o_tstop = getTStop(stop)

templ
temp2

= str2num(stop);
= str2num(get(findobj(gcf, "Tag", "tstart”), "String”));
ifT (isempty(templ)) | (templ < 0) | (templ > 180)
errordlg("Enter a Theta ending angle between starting angle and 180
degrees.”, ...
"Theta Stop Angle Status®, “error”);
templ = 180; % default theta stop angle
elseif (temp2 > templ) % theta stop less than theta start angle
errordlg("Theta ending angle is less than starting angle!”, ...
"Theta Stop Angle Status®,"error®);
templ = 180; % default theta stop angle
elseif (stop == "i" | stop == ")
errordlg("Enter a Theta Ending angle between 0 and 180 degrees.”, ...
"Theta Stop Angle Status®, “error”);
templ = 180; % default theta ending angle
end
o_tstop = templ;
% end getTStop

% validates Number of Elements in array or subarray
function nel_out = getNEL(el_str)

temp = str2double(el_str);

if (isempty(temp)) || (Floor(temp) <= 0)
errordlg("Enter a postive integer.”, ...
*Number of Elements®, “error®);

2; % default set to 2

temp
end
nel_out = floor(temp);
% end getNEL
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% validates Array Element Spacing
function o_del = getSpacing(str)

temp = str2double(str);
if (isempty(temp)) || (Floor(temp) < 0)
errordlg("Please check spacing of array elements.”, ...
" Element Spacing®, "error®);
temp = 1; % default
end
o_del = temp;
% end getSpacing

% validates Scan Angle for Theta and Phi
function o_scan = getScanAngle(scan_angle)

temp = scan_angle;

if (isempty(temp)) | (temp < 0) | (temp > 180)
errordlg("Enter a Scan Angle between 0 and 180 degrees.”",

" Scan Angle®, “error");

temp = 90; % default scan angle

end

0_scan = temp;

% end getScanAngle
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function [SAFtheta,SAFphi,DAFtheta,DAFphi,U,W]=caf_hdip2(tr,F,dx,Nx, ...
dz,Nz, Ix,Mx,1z,Mz,h,dipdir,thetas,phis, tstart,tstop, ...
pstart,pstop,delt,delp,ampxs,ampzs,ampx,ampz)

% caf_hdip2.m

% Version: 2.2

% Author: Cher Hock Hin

% Advisor: Professor David C. Jenn
% Date: 16 August 2012

%

% Function computes array pattern for DSA in phi and theta cut (non-dB).
% Linear array of half-way dipoles with a ground plane.
% z is array axis; ground plane is the xz plane.

% y is normal to ground plane.
%

% Function inputs:

% £ = frequency

% dx = Subarray element spacing in x-direction in wavelengths
% Nx = Number of subarray elements in x-direction

% dz = Subarray element spacing in z-direction in wavelengths
% Nz = Number of subarray elements in z-direction

% Ix = Subarray spacing in x-direction in wavelengths

% Mx = Number of subarrays in x-direction

% 0z = Subarray spacing in z-direction in wavelengths

% Mz = Number of subarrays in z-direction

% h = height of element above ground plane in wavelengths

% dipdir = dipole direction (''x"=x-direction,
% thetas = theta scan angle

% phis = phi scan angle

% tstart = start angle for theta

% tstop = stop angle for theta

% pstart = start angle for phi

% pstop = stop angle for phi

z"'=z-direction)

% delt = theta step size for pattern calculation

% delp = phi step size for pattern calculation

% ampxs = DSA amplitude distribution for x-plane

% ampzs = DSA amplitude distribution for z-plane

% ampx = Subarray amplitude distribution for x-plane
% ampz = Subarray amplitude distribution for z-plane

% Function outputs:

% SAFtheta = Array pattern of single subarray for theta (complex)
% SAFphi = Array pattern of single subarray for phi (complex)

% DAFtheta = Array pattern of DSA for theta (complex)

% DAFphi = Array pattern of DSA for theta (complex)

warning off

rad=pi/180;

wave=3e8/TF; %find wavelength
beta=2*pi/wave; %find beta
bk = 2*pi;

%Set for loop values
it=Floor((tstop-tstart)/delt)+1;
ip=Floor((pstop-pstart)/delp)+1;

%0pen waitbar

if tr == "t", txrx = “transmit”; end

if tr == "r", txrx = “receive”; end

msg = ["Computing ",txrx," array pattern for
hwait=waitbar(0,msg);

pause(0.1);
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% determine the phase distribution
us = sin(thetas*rad)*cos(phis*rad);
ws = cos(thetas*rad);

psix = bk*dx*us;
psiz = bk*dz*ws;
psix_s = bk*Ix*us;

psiz_s = bk*lz*ws;

% generate exact phase required at each element.

% positive scan corresponds to increasing phase lag with increasing n.
XsiX = -(2*[1:Nx] - (Nx + 1))/2*psix;

xminx = min(xsix(1),xsix(Nx));

XSIX(1:Nx)=xsix(1:Nx)-xminx;

gphx=xsix;

xsiz = -(2*[1:Nz] - (Nz + 1))/2*psiz;

xminz = min(xsiz(1),xsiz(Nz));

xsiz(1:Nz)=xsiz(1:Nz)-xminz;

gphz=xsiz;

% generate exact phase required at each subarray.

% positive scan corresponds to increasing phase lag with increasing n.
XsSiX_s = -(2*[1:Mx] - (Mx + 1))/2*psix_s;

xminx_s = min(xsix_s(1),xsix_s(Mx));
XsiX_s(1:Mx)=xsix_s(1:Mx)-xminx_s;

gphx_s=xsix_s;

xsiz_s = -(2*[1:Mz] - (Mz + 1))/2*psiz_s;

xminz_s = min(xsiz_s(1),xsiz_s(Mz));
xsiz_s(1:Mz)=xsiz_s(1:Mz)-xminz_s;

gphz_s=xsiz_s;

%Preallocate array size
phi=zeros(ip,it); theta=zeros(ip,it);
U=zeros(ip,it); V=zeros(ip,it); W=zeros(ip,it);
AF=zeros(ip,it); AFs=zeros(ip,it);
SAFtheta=zeros(ip,it); SAFphi=zeros(ip,it);
DAFtheta=zeros(ip,it); DAFphi=zeros(ip,it);
count=0;
% begin Pattern loop
for i11=1:ip %Loop phi
for i2=1:it %Loop theta
figure(hwait);
count=count+1;
waitbar(count/(ip*it),hwait);
phi(il,i2) = pstart + (il - 1)*delp;
phr = phi(il,i2)*rad;
theta(il,i2) = tstart + (i2 - 1)*delt;

thr = theta(il,i2)*rad;
st = sin(thr); ct = cos(thr);
cp = cos(phr); sp = sin(phr);
u = st*cp; v = st*sp; w = Cct;
U(il,i2) = u; V(il,i2) = v; W(il,i2)=w;
sumx = 0;
%Sum to get array factor of subarray--- begin subarray loop ---

for n = 1:Nx
nn = (2*n - (Nx + 1))/72;
argx = bk*dx*u*nn;
for m = 1:Nz
mm = (2*m - (Nz+1))/2;
argz = bk*dz*w*mm;
phase = gphx(n) + gphz(m);
sumx = sumx + ampx(n)*ampz(m)*exp(li*(phase+argx+argz));
end
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end % end subarray loop -----
sumx_s = 0;

%Sum to get array factor of distributed subarrays--- begin dsa loop ---

end
end

% close
close(h

return

for n = 1:Mx
nn = (2*n - (Wx + 1))/2;
argx_s = bk*Ix*u*nn;
for m = 1:Mz
mm = (2*m - (Mz+1))/2;
argz_s = bk*lz*w*mm;
phase_s = gphx_s(n) + gphz_s(m);
SUMX_S = sumx_s +
ampxs(n)*ampzs(m)*exp(li*(phase_s+argx_s+argz_s));
end
end % end dsa loop -----

AF(i1,12) = sumx; %Array factor for each subarray
AFs(il,i2) = sumx_s; %Array factor for dsa
GF = 2*sin(bk*h*v); %Ground plane factor

if dipdir=="z" %Colinear dipoles (z directed)
EFtheta=cos(pi*w/2)./sqrt(1-w."2+1e-5);
EFphi=0;

end

if dipdir="x" %Parallel case (x directed)
EFtheta=cp.*w.*cos(pi*u/2)./(1-u."2+1le-5);
EFphi=-sp.*cos(pi*u/2)./(1-u."2+1e-5);

end

%Compute Subarray Pattern

SAFtheta(il,i2) = AF(il,i2)*GF*EFtheta;
SAFphi(il1,i2) = AF(il,i2)*GF*EFphi;

%Compute DSA Pattern

DAFtheta(il,i2) = AF(il,i2)*GF*EFtheta*AFs(il,i2);
DAFphi(i1,i2) = AF(il,i2)*GF*EFphi*AFs(il,i2);

% end of pattern loop

waitbar
wait);
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function [SAFtheta,SAFphi,DAFtheta,DAFphi,U,W]=caf_sdip2(tr,Ff,dx,Nx, ...
dz,Nz, Ix,Mx,1z,Mz,h,dipdir,thetas,phis, tstart,tstop, ...
pstart,pstop,delt,delp,ampxs,ampzs,ampx,ampz)

% caf_sdip2.m

% Version: 2.2

% Author: Cher Hock Hin

% Advisor: Professor David C. Jenn
% Date: 16 August 2012

%

% Function computes array pattern for DSA in phi and theta cut (non-dB).
% Linear array of short dipoles with a ground plane.
% z is array axis; ground plane is the xz plane.

% y is normal to ground plane.
%

% Function inputs:

% £ = frequency

% dx = Subarray element spacing in x-direction in wavelengths
% Nx = Number of subarray elements in x-direction

% dz = Subarray element spacing in z-direction in wavelengths
% Nz = Number of subarray elements in z-direction

% Ix = Subarray spacing in x-direction in wavelengths

% Mx = Number of subarrays in x-direction

% 0z = Subarray spacing in z-direction in wavelengths

% Mz = Number of subarrays in z-direction

% h = height of element above ground plane in wavelengths

% dipdir = dipole direction (''x"=x-direction,
% thetas = theta scan angle

% phis = phi scan angle

% tstart = start angle for theta

% tstop = stop angle for theta

% pstart = start angle for phi

% pstop = stop angle for phi

z"'=z-direction)

% delt = theta step size for pattern calculation

% delp = phi step size for pattern calculation

% ampxs = DSA amplitude distribution for x-plane

% ampzs = DSA amplitude distribution for z-plane

% ampx = Subarray amplitude distribution for x-plane
% ampz = Subarray amplitude distribution for z-plane

% Function outputs:

% SAFtheta = Array pattern of single subarray for theta (complex)
% SAFphi = Array pattern of single subarray for phi (complex)

% DAFtheta = Array pattern of DSA for theta (complex)

% DAFphi = Array pattern of DSA for theta (complex)

warning off

rad=pi/180;

wave=3e8/TF; %find wavelength
beta=2*pi/wave; %find beta
bk = 2*pi;

%Set for loop values
it=Floor((tstop-tstart)/delt)+1;
ip=Floor((pstop-pstart)/delp)+1;

%0pen waitbar

if tr == "t", txrx = “transmit”; end

if tr == "r", txrx = “receive”; end

msg = ["Computing ",txrx," array pattern for
hwait=waitbar(0,msg);

pause(0.1);
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% determine the phase distribution
us = sin(thetas*rad)*cos(phis*rad);
ws = cos(thetas*rad);

psix = bk*dx*us;
psiz = bk*dz*ws;
psix_s = bk*Ix*us;

psiz_s = bk*lz*ws;

% generate exact phase required at each element.

% positive scan corresponds to increasing phase lag with increasing n.
XsiX = -(2*[1:Nx] - (Nx + 1))/2*psix;

xminx = min(xsix(1),xsix(Nx));

XSIX(1:Nx)=xsix(1:Nx)-xminx;

gphx=xsix;

xsiz = -(2*[1:Nz] - (Nz + 1))/2*psiz;

xminz = min(xsiz(1),xsiz(Nz));

xsiz(1:Nz)=xsiz(1:Nz)-xminz;

gphz=xsiz;

% generate exact phase required at each subarray.

% positive scan corresponds to increasing phase lag with increasing n.
XsSiX_s = -(2*[1:Mx] - (Mx + 1))/2*psix_s;

xminx_s = min(xsix_s(1),xsix_s(Mx));
XsiX_s(1:Mx)=xsix_s(1:Mx)-xminx_s;

gphx_s=xsix_s;

xsiz_s = -(2*[1:Mz] - (Mz + 1))/2*psiz_s;

xminz_s = min(xsiz_s(1),xsiz_s(Mz));
xsiz_s(1:Mz)=xsiz_s(1:Mz)-xminz_s;

gphz_s=xsiz_s;

%Preallocate array size
phi=zeros(ip,it); theta=zeros(ip,it);
U=zeros(ip,it); V=zeros(ip,it); W=zeros(ip,it);
AF=zeros(ip,it); AFs=zeros(ip,it);
SAFtheta=zeros(ip,it); SAFphi=zeros(ip,it);
DAFtheta=zeros(ip,it); DAFphi=zeros(ip,it);
count=0;
% begin Pattern loop
for i11=1:ip %Loop phi
for i2=1:it %Loop theta
figure(hwait);
count=count+1;
waitbar(count/(ip*it),hwait);
phi(il,i2) = pstart + (il - 1)*delp;
phr = phi(il,i2)*rad;
theta(il,i2) = tstart + (i2 - 1)*delt;

thr = theta(il,i2)*rad;
st = sin(thr); ct = cos(thr);
cp = cos(phr); sp = sin(phr);
u = st*cp; v = st*sp; w = Cct;
U(il,i2) = u; V(il,i2) = v; W(il,i2)=w;
sumx = 0;
%Sum to get array factor of subarray--- begin subarray loop ---

for n = 1:Nx
nn = (2*n - (Nx + 1))/72;
argx = bk*dx*u*nn;
for m = 1:Nz
mm = (2*m - (Nz+1))/2;
argz = bk*dz*w*mm;
phase = gphx(n) + gphz(m);
sumx = sumx + ampx(n)*ampz(m)*exp(li*(phase+argx+argz));
end
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end % end subarray loop -----
sumx_s = 0;

%Sum to get array factor of distributed subarrays--- begin dsa loop ---

end
end

% close
close(h

return

for n = 1:Mx
nn = (2*n - (Wx + 1))/2;
argx_s = bk*Ix*u*nn;
for m = 1:Mz
mm = (2*m - (Mz+1))/2;
argz_s = bk*lz*w*mm;
phase_s = gphx_s(n) + gphz_s(m);
SUMX_S = sumx_s +
ampxs(n)*ampzs(m)*exp(li*(phase_s+argx_s+argz_s));
end
end % end dsa loop -----

AF(i1,12) = sumx; %Array factor for each subarray
AFs(il,i2) = sumx_s; %Array factor for dsa
GF = 2*sin(bk*h*v); %Ground plane factor

if dipdir=="z" %Colinear dipoles (z directed)
EFtheta=sqrt(1-w.”"2);
EFphi=0;

end

if dipdir="x" %Parallel case (x directed)
EFtheta=cp.-*w;
EFphi=-sp;

end

%Compute Subarray Pattern

SAFtheta(il,i2) = AF(il,i2)*GF*EFtheta;
SAFphi(il1,i2) = AF(il,i2)*GF*EFphi;

%Compute DSA Pattern

DAFtheta(il,i2) = AF(il,i2)*GF*EFtheta*AFs(il,i2);
DAFphi(i1,i2) = AF(il,i2)*GF*EFphi*AFs(il,i2);

% end of pattern loop

waitbar
wait);
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function [SAFtheta,SAFphi ,DAFtheta,DAFphi,U,W]=caf_iso2(tr,f,dx,Nx, ...
dz,Nz, Ix,Mx,1z,Mz,h,thetas,phis, tstart, tstop, ...
pstart,pstop,delt,delp,ampxs,ampzs,ampx,ampz)

% caf_iso2.m

% Version: 2.2

% Author: Cher Hock Hin

% Advisor: Professor David C. Jenn

% Date: 16 August 2012

%

% Function computes array pattern for DSA in phi and theta cut (non-dB).

% Linear array of isotropic elements with a ground plane.

% z is array axis; ground plane is the xz plane.

% y is normal to ground plane.

%

% Function inputs:

% £ = frequency

% dx = Subarray element spacing in x-direction in wavelengths
% Nx = Number of subarray elements in x-direction

% dz = Subarray element spacing in z-direction 1in wavelengths
% Nz = Number of subarray elements in z-direction

% Ix = Subarray spacing in x-direction in wavelengths

% Mx = Number of subarrays in x-direction

% 0z = Subarray spacing in z-direction in wavelengths

% Mz = Number of subarrays in z-direction

% h = height of element above ground plane in wavelengths
% thetas = theta scan angle

% phis = phi scan angle

% tstart = start angle for theta

% tstop = stop angle for theta

% pstart = start angle for phi

% pstop = stop angle for phi

% delt = theta step size for pattern calculation

% delp = phi step size for pattern calculation

% ampxs = DSA amplitude distribution for x-plane

% ampzs = DSA amplitude distribution for z-plane

% ampx = Subarray amplitude distribution for x-plane
% ampz = Subarray amplitude distribution for z-plane

% Function outputs:

% SAFtheta = Array pattern of single subarray for theta (complex)
% SAFphi = Array pattern of single subarray for phi (complex)

% DAFtheta = Array pattern of DSA for theta (complex)

% DAFphi = Array pattern of DSA for theta (complex)

warning off

rad=pi/180;

wave=3e8/f; %find wavelength
beta=2*pi/wave; %find beta
bk = 2*pi;

%Set for loop values
it=Floor((tstop-tstart)/delt)+1;
ip=Floor((pstop-pstart)/delp)+1;

%0pen waitbar

if tr == "t", txrx "transmit”; end

if tr == "r", txrx "receive”; end

msg = ["Computing °,txrx," array pattern for ",num2str(it*ip),” angles™];
hwait=waitbar(0,msg);

pause(0.1);

% determine the phase distribution
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us = sin(thetas*rad)*cos(phis*rad);
ws = cos(thetas*rad);

bk*dx*us;

bk*dz*ws;

bk*Ix*us;

bk*1z*ws;

T T
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% generate exact phase required at each element.

% positive scan corresponds to increasing phase lag with increasing n.
xsix = —(2*[1:Nx] - (Nx + 1))/2*psix;

xminx = min(xsix(1),xsix(Nx));

XSIX(1:Nx)=xsix(1:Nx)-xminx;

gphx=xsix;

xsiz = -(2*[1:Nz] - (Nz + 1))/2*psiz;

xminz = min(xsiz(1),xsiz(Nz));

xsiz(1:Nz)=xsiz(1:Nz)-xminz;

gphz=xsiz;

% generate exact phase required at each subarray.

% positive scan corresponds to increasing phase lag with increasing n.
Xsix_s = -(2*[1:Mx] - (Mx + 1))/2*psix_s;

xminx_s = min(xsix_s(1),xsix_s(Mx));
XsixX_s(1:Mx)=xsix_s(1:Mx)-xminx_s;

gphx_s=xsix_s;

xsiz_s = -(2*[1:Mz] - (Mz + 1))/2*psiz_s;

xminz_s = min(xsiz_s(1),xsiz_s(Mz));
xsiz_s(1:Mz)=xsiz_s(1:Mz)-xminz_s;

gphz_s=xsiz_s;

%Preallocate array size
phi=zeros(ip,it); theta=zeros(ip,it);
U=zeros(ip,it); V=zeros(ip,it); W=zeros(ip,it);
AF=zeros(ip,it); AFs=zeros(ip,it);
SAFtheta=zeros(ip,it); SAFphi=zeros(ip,it);
DAFtheta=zeros(ip, it); DAFphi=zeros(ip,it);
count=0;
% begin Pattern loop
for il1=1:ip %Loop phi
for i2=1:it %Loop theta
figure(hwait);
count=count+1;
waitbar(count/(ip*it),hwait);
phi(il,i2) = pstart + (il - 1)*delp;
phr = phi(il,i2)*rad;
theta(il,i2) = tstart + (i2 - 1)*delt;
thr = theta(il,i2)*rad;

st = sin(thr); ct = cos(thr);
cp = cos(phr); sp = sin(phr);
u = st*cp; Vv = st*sp; w = ct;
Uil,i2) = u; V(il,i2) = v; W(il,i2)=w;
sumx = 0;
%Sum to get array factor of subarray--- begin subarray loop ---

for n = 1:Nx
nn = (2*n - (Nx + 1))/2;
argx = bk*dx*u*nn;
for m = 1:Nz
mm = (2*m - (Nz+1))/2;
argz = bk*dz*w*mm;
phase = gphx(n) + gphz(m);
sumx = sumx + ampx(n)*ampz(m)*exp(li*(phase+argx+argz));
end
end % end subarray loop -----



sumx_s = 0;

%Sum to get array factor of distributed subarrays--- begin dsa loop ---

end
end

% close

for n = 1:Mx
nn = (2*n - (Mx + 1))/2;
argx_s = bk*Ix*u*nn;
for m = 1:Mz
mm = (2*m - (Mz+1))/2;
argz_s = bk*lz*w*mm;
phase_s = gphx_s(n) + qphz_s(m);
SuUmX_s = sumx_s +
ampxs(n)*ampzs(m)*exp(1i*(phase_s+argx_s+argz_s));
end
end % end dsa loop -----

AF(i1,12) = sumx; %Array factor for each subarray
AFs(il,i2) = sumx_s; %Array factor for dsa
GF = 2*sin(bk*h*v); %Ground plane factor

%Compute Subarray Pattern

SAFtheta(il,i2) = AF(il,i2)*CF;
SAFphi(il,i2) = AF(il,i2)*GF;

%Compute DSA Pattern

DAFtheta(il,i2) = AF(il,i2)*GF*AFs(il,i2);
DAFphi(il,i2) = AF(il1,i12)*GF*AFs(il,i12);

% end of pattern loop

waitbar

close(hwait);

return
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function [ampnorm] = getamplitudes(N,dist,pedval,nexp)

% Filename: getamplitudes.m

%

% Description: This program calculates the amplitude distribution.
% Author: Prof. David C. Jenn

% Modified by: Cher Hock Hin

% Date: 4 August 2012

% Required subroutines: tayl.m; cosine.m; bayliss.m

% uniform array excitation coefficients (=1/nel)

if dist ==
for 1 = 1:N
amp(i) = 1/N;
end
end

% call subroutine to compute taylor coefficients
% NEL MUST BE EVEN
if dist ==
amp(1:N) = tayl(N,pedval,nexp);
end

% call subroutine to compute cosine-on-a-pedestal distribution
if dist ==

amp(1:N) = cosine(N,pedval,nexp);
end

% call subroutine to compute bayliss distribution for difference beams
% NEL MUST BE EVEN
if dist ==
amp(1:N) = bayliss(N,pedval,nexp);
end

% compute triangular coefficients

if dist ==
for i = 1:N
n=@a* - (N + 1))/2;
amp(i) = 1 - abs(2*n/N);
end
end

% normalize all coefficients to the maximum value
ampmax = max{amp);
ampnorm = amp/ampmax ;
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function amp=bayliss(nel,sll, nbar)
%
% SUBROUTINE TO COMPUTE LINEAR BAYLISS COEFFICIENTS FOR DIFFERENCE
% BEAMS. LINEAR BAYLISS DISTRIBUTION
%
nbarl=nbar-1;
for i=1:11
mu(i)=(i-1)+.5;
end
sl125=s11-25;
z(1)=1.87+s1125*.038;
z(2)=2.50+s1125*.016;
z(3)=3.35+s1125*.019;
z(4)=4_.25+s1125*.016;
a=1.45+s1125*.042;
for ns=5:nbar
z(ns)=sqgrt(an2+ns”2);
end
sigma=mu(nbar+1)/z(nbar);
del=2/(nel-1);
for i=1:nel/2
rho=del/2+del*(i-1);
for mms=1:nbar
bb=1;
for ns=1l:nbarl
bb=bb*(1-(mu(mms)/(sigma*z(ns)))"2);

end
bbb=1;
for lls=1:nbar
if llIs ~= mms
bbb=bbb*(1-(mu(mms)/mu(11s))"2);
end
end

bes=(-1)"mms;

b(mms)=mu(mms)”~2/bes*bb/bbb;

end

99=0;

for Ils=1l:nbar
pmu=mu(l1s)*pi*rho;
bes=sin(pmu);
gg=gg+b(1l1s)*bes;

end

gg=abs(g9);

amp(nel/2+i)=gg;

amp(nel/2+1-i)=qgg;

end

function amp=cosine(nel,peddb,nexp)
% cosine on a pedestal distribution
% scale the number of elements to correspond to -1 through +1

ped=10"(-peddb/20.);
for n=1:nel
xn=(n-1)/(nel-1)*2-1;
amp(n)=(1.-ped)*abs(cos(xn*pi/2))nexp+ped;
end
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function amp=tayl(noel,slldb,nbar)
%

% COMPUTES TAYLOR DISTRIBUTION FOR GIVEN SIDELOBE LEVEL AND NBAR
%
% AMP=ARRAY OF AMPLITUDES COMPUTED BY SUBROUTINE
% NOEL=NUMBER OF ARRAY ELEMENTS
% SLL=SIDELOBE LEVEL IN DB
% NBAR=NBAR IN TAYLOR DISTRIBUTION (.LE.50)
%

for i=1:noel

amp(i)=.5;
end

if nbar-=1 % if nbar > 1
dbamp=20/10g(10);
sll=exp(abs(slldb)/dbamp);
as=log(sll+sqrt(sl1™2-1))/pi;
as=as”2;
s=nbar”2/(as+nbar”2-nbar+.25);
nll=nbar-1;
for ii1=1:nl1l
al=iin2/s;
f(ii)=1;
for jj=1:nll
f(D)=Fi1)*(1-al/(as+jj"2-jj+-25));
end
for jj=1:ii
fGD)=FGi)/(A+ii/(nbar-jj));
end
end
m2=noel/2; % noel assumed positive
if 2*m2 <= noel
dum=.5;
for 1i=1:nll
dum=dum+f(ii);

end
amp(m2+1)=2*dum;
end
for 1i=1:m2
k=noel+1-ii;
for jj=1:nll
amp(ii)=amp(ii)+fF@jJ)*cos(pi*jj*(k-ii)/noel);
end

amp(ii)=2*amp(ii);
amp(k)=amp(ii);
end
end
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function

[gain,prad,emax]=compute_gain(tr,f,dx,Nx,dz,Nz, Ix,Mx,1z,Mz,h,diptype,dipdir,the
tas,phis,ampxs,ampzs,ampx,ampz,ndivt,ndivp)

% compute_gain.m

% Version: 1.1

% Author: Cher Hock Hin

% Advisor: Professor David C. Jenn

% Date: 11 August 2012

%

% Function computes gain for DSA in x-z plane with y normal.
% Uses 20 points Gaussian quadrature integration.

% Reads integration constants from gausq20.m

%

% Function inputs:

% tr = "t for XMTR and "r*® for RCVR

% £ = frequency

% dx = Subarray element spacing in x-direction in wavelengths
% Nx = Number of subarray elements in x-direction

% dz = Subarray element spacing in z-direction 1in wavelengths
% Nz = Number of subarray elements in z-direction

% Ix = Subarray spacing in x-direction in wavelengths

% Mx = Number of subarrays in x-direction

% 0z = Subarray spacing in z-direction in wavelengths

% Mz = Number of subarrays in z-direction

% h = height of element above ground plane in wavelengths

% diptype = element type ('s'=short,"h"=half-wave,"i"'=isotropic)
% dipdir = dipole direction (''x"=x-direction,"z"=z-direction)

% thetas theta scan angle

% phis = phi scan angle

% ndivt = number of integration intervals for theta
% ndivp = number of integration intervals for phi
% ampxs = DSA amplitude distribution for x-plane
% ampzs = DSA amplitude distribution for z-plane
% ampx = Subarray amplitude distribution for x-plane
% ampz = Subarray amplitude distribution for z-plane

% Function outputs:

% gain = Numerical gain of DSA
% prad = Total radiated power of DSA
% emax = Maximum Ffield value of DSA

rad=pi/180;

wave=3e8/f; %find wavelength
beta=2*pi/wave; %find beta
bk = 2*pi;

% load data for 20-point Gaussian quadrature integration
load gausg20.m

xt=gausq20(:,1);

at=gausq20(:,2);

nt=length(xt);

Timel=cputime;

% integration interval in theta (degrees)

S1=0*rad;

S2=180*rad;

% integration interval in phi (degrees)

Q1=0*rad;

Q2=180*rad;

% generate integration points in theta and phi

% ndivt and ndivp points will be used but the contribution at
% ndivt+l and ndivp+l
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ds=(S2-S1)/ndivt;
for i=1l:ndivt+l
SS(1)=(i-1)*ds;
disp(["1,SS(i1)= ",num2str(i), ", ",num2str(SS(i))])
end
dg=(Q2-Q1)/ndivp;
for i=1:ndivp+l
QQ(i)=(i-1)*dq;
disp([71,Q00(1)= ",num2str(i), ", °,num2str(QQ(i))D)
end
% subintervals in phi
nphi=0;
for 1i=1:ndivp
P1=dg/2;
P2=(QQ(i1+1)+QQ(ii))/2;
for n=1:nt
nphi=nphi+1;
wphi(nphi)=at(n);
phi(nphi)=P1*xt(n)+P2;
end
end
% subintervals in theta
ntheta=0;
for 1i=1l:ndivt
T1l=ds/2;
T2=(SS(1i+1)+SS(ii))/2;
for i=1:nt
ntheta=ntheta+1;
wtheta(ntheta)=at(i);
theta(ntheta)=T1*xt(i)+T2;
end
end

ninteg=ntheta*nphi;

if tr=="t", tr="transmit"; end

if tr=="r", tr="receive”; end

msg=["Computing gain for ",tr," array”,sprintf("\n"), ...
"over ",num2str(ninteg),” integration points"];

hwait=waitbar(0,msg);

% determine the phase distribution
us = sin(thetas*rad)*cos(phis*rad);
ws = cos(thetas*rad);

psix = bk*dx*us;

psiz = bk*dz*ws;

% generate exact phase required at each element.

% positive scan corresponds to increasing phase lag with increasing n.
XsiX = -(2*[1:Nx] - (Nx + 1))/2*psix;

xminx = min(xsix(1),xsix(Nx));

XSIX(1:Nx)=xsix(1:Nx)-xminx;

gphx=xsix;

xsiz = -(2*[1:Nz] - (Nz + 1))/2*psiz;

xminz = min(xsiz(1),xsiz(Nz));

xsiz(1:Nz)=xsiz(1:Nz)-xminz;

gphz=xsiz;

% generate exact phase required at each subarray.

% positive scan corresponds to increasing phase lag with increasing n.
XsSiX_s = -(2*[1:Mx] - (Mx + 1))/2*psix;

xminx_s = min(xsix_s(1),xsix_s(Mx));
XSIX_S(L:Mx)=xsix_s(1:Mx)-xminx_s;
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gphx_s=xsix_s;

xsiz_s = -(2*[1:Mz] - (Mz + 1))/2*psiz;
xminz_s = min(xsiz_s(1),xsiz_s(Mz));
xsiz_s(1:Mz)=xsiz_s(1:Mz)-xminz_s;
gphz_s=xsiz_s;

% compute field at the integration points
emax=0; sum_pwr=0; ism=0;
% begin Pattern loop
for iphi=1:nphi %Loop phi
for itheta=l:ntheta %Loop theta
ism=ism+1;
waitbar(ism/ninteg,hwait);
thr = theta(itheta); phr = phi(iphi);

st = sin(thr); ct = cos(thr);
cp = cos(phr); sp = sin(phr);
u = st*cp; Vv = st*sp; w = ct;
sumx = 0;
%Sum to get array factor of subarray--- begin subarray loop ---

for n = 1:Nx
nn = (2*n - (Nx + 1))/2;
argx = bk*dx*u*nn;
for m = 1:Nz
mm = (2*m - (Nz+1))/2;
argz = bk*dz*w*mm;
phase = gphx(n) + gphz(m);
sumx = sumx + ampx(n)*ampz(m)*exp(li*(phase+argx+argz));
end
end % end subarray loop -----
sumx_s = 0;
%Sum to get array factor of distributed subarrays--- begin dsa loop ---
for n = 1:Mx
nn = (2*n - (Mx + 1))/2;
argx_s = bk*Ix*u*nn;
for m = 1:Mz
mm = (2*m - (Mz+1))/2;
argz_s = bk*1z*w*mm;
phase_s = gphx_s(n) + gphz_s(m);
SUMX_S = sumx_s +
ampxs(n)*ampzs(m)*exp(li*(phase_s+argx_s+argz_s));
end
end % end dsa loop -----

GF = 2*sin(bk*h*v); %Ground plane factor

if diptype=="i" %Compute element factor for isotropic
EFtheta=1; EFphi=-1;
end

if diptype=="h" %Compute element factor for half-wave dipole
if dipdir=="z" %Colinear dipoles (z directed)
EFtheta=cos(pi*w/2)./sqrt(1-w."2+1e-5);
EFphi=0;
end
if dipdir=="x" %Parallel case (x directed)
EFtheta=cp.*w.*cos(pi*u/2)./(1-u."2+1e-5);
EFphi=-sp.*cos(pi*u/2)./(1-u."2+1le-5);
end
end

iT diptype=="s" %Compute element factor for short dipole
d

ipdir=="z" %Colinear dipoles (z directed)
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EFtheta=sqrt(1-w."2);
EFphi=0;

end

if dipdir="x" %Parallel case (x directed)
EFtheta=cp.*w;
EFphi=-sp;

end

end

% compute emag
emagt = sumx*sumx_s*GF*EFtheta;
emagp = sumx*sumx_s*GF*EFphi ;
emagsq = abs(emagt)”2 + abs(emagp)”2;
if emagsq > emax, emax=emagsq; end % keep track of emax
xint = emagsqg*st;
sum_pwr = sum_pwr + wphi(iphi)*wtheta(itheta)*xint;
end
end % end of pattern loop

% close waitbar
close(hwait);

prad=T1*P1*sum_pwr; % compute radiated power
gain=4*pi*emax/prad; % compute gain

Time2=cputime-Timel;
disp(["runtime for integration: °,num2str(Time2)])

return
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function varargout = two_way_pattern(varargin)
% TWO_WAY_PATTERN M-file for two_way_ pattern.fig

% TWO_WAY_PATTERN, by itself, creates a new TWO_WAY_PATTERN or raises the
existing

% singleton*.

%

% H = TWO_WAY_PATTERN returns the handle to a new TWO WAY_PATTERN or the
handle to

% the existing singleton*.

%

% TWO_WAY_PATTERN("CALLBACK® ,hObject,eventData,handles,...) calls the
local

% function named CALLBACK in TWO_WAY_PATTERN.M with the given input
arguments.

%

% TWO_WAY_PATTERN("Property”, "Value®,...) creates a new TWO_WAY_PATTERN or
raises the

% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before two_way pattern_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to two_way_ pattern_OpeningFcn via varargin.
%

% *See GUI Options on GUIDE"s Tools menu. Choose "GUI allows only one

% instance to run (singleton)™.

%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help two_way_ pattern
% Last Modified by GUIDE v2.5 04-Aug-2012 21:11:53

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct("gui_Name", mfilename, ...
"gui_sSingleton®, gui_Singleton, ...
"gui_OpeningFcn®, @two_way_pattern_OpeningFcn, ...
“gui_OutputFcn®, @two_way_pattern_OutputFcn, ...
"gui_LayoutFcn®, [1 , ---
"gui_Callback", [D:

if nargin && ischar(varargin{l})

gui_State.gui_Callback = str2func(varargin{l});
end

if nargout
[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before two_way pattern is made visible.

function two_way_pattern_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to two_way_pattern (see VARARGIN)

% Choose default command line output for two way pattern
handles.output = hObject;

% Update handles structure
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guidata(hObject, handles);

% UIWAIT makes two_way_ pattern wait for user response (see UIRESUME)
% uiwait(handles.figurel);

% --- Outputs from this function are returned to the command line.

function varargout = two_way_pattern_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{l} = handles.output;

% --- Executes on button press in pushbuttonl.

function pushbuttonl_Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton2.

function pushbutton2_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on selection change in eltype.

function eltype_Callback(hObject, eventdata, handles)

% hObject handle to eltype (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject, "String®)) returns eltype contents as
cell array
% contents{get(hObject, "Value®)} returns selected item from eltype

% --- Executes during object creation, after setting all properties.
function eltype_CreateFcn(hObject, eventdata, handles)

% hObject handle to eltype (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundColor*))
set(hObject, "BackgroundCollor”®, "white®);
end

function dzt_Callback(hObject, eventdata, handles)

% hObject handle to dzt (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject, "String") returns contents of dzt as text

% str2double(get(hObject, "String")) returns contents of dzt as a double
% --- Executes during object creation, after setting all properties.

function dzt_CreateFcn(hObject, eventdata, handles)

% hObject handle to dzt (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called
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% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor*®))
set(hObject, "BackgroundCollor”®, "*white");
end

function dxt_Callback(hObject, eventdata, handles)

% hObject handle to dxt (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject, "String") returns contents of dxt as text
% str2double(get(hObject, "String”)) returns contents of dxt as a double

% --- Executes during object creation, after setting all properties.
function dxt_CreateFcn(hObject, eventdata, handles)

% hObject handle to dxt (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundColor*®))
set(hObject, "BackgroundCollor”®, "*white");
end

function Nzt_Callback(hObject, eventdata, handles)

% hObject handle to Nzt (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject, "String") returns contents of Nzt as text
% str2double(get(hObject, "String”)) returns contents of Nzt as a double

% --- Executes during object creation, after setting all properties.
function Nzt_CreateFcn(hObject, eventdata, handles)

% hObject handle to Nzt (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor*®))
set(hObject, "BackgroundCollor”®, "*white");
end

function Nxt_Callback(hObject, eventdata, handles)

% hObject handle to Nxt (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,"String") returns contents of Nxt as text
% str2double(get(hObject, "String®)) returns contents of Nxt as a double

% --- Executes during object creation, after setting all properties.
function Nxt_CreateFcn(hObject, eventdata, handles)

% hObject handle to Nxt (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
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% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundColor™))
set(hObject, "BackgroundColor®, "white®);
end

function Mxt_Callback(hObject, eventdata, handles)

% hObject handle to Mxt (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject, "String") returns contents of Mxt as text
% str2double(get(hObject, "String”)) returns contents of Mxt as a double

% --- Executes during object creation, after setting all properties.
function Mxt_CreateFcn(hObject, eventdata, handles)

% hObject handle to Mxt (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
iT ispc && isequal(get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundColor™))
set(hObject, "BackgroundColor®, "white®);
end

function Mzt_Callback(hObject, eventdata, handles)

% hObject handle to Mzt (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject, "String") returns contents of Mzt as text
% str2double(get(hObject, "String")) returns contents of Mzt as a double

% --- Executes during object creation, after setting all properties.
function Mzt_CreateFcn(hObject, eventdata, handles)

% hObject handle to Mzt (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor™))
set(hObject, "BackgroundColor®, "white®);
end

function Ixt_Callback(hObject, eventdata, handles)

% hObject handle to Ixt (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,"String®) returns contents of Ixt as text
% str2double(get(hObject, "String")) returns contents of Ixt as a double

% --- Executes during object creation, after setting all properties.
function Ixt_CreateFcn(hObject, eventdata, handles)
% hObject handle to Ixt (see GCBO)
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% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor*®))
set(hObject, "BackgroundColor”®,"white®);
end

function Izt_Callback(hObject, eventdata, handles)

% hObject handle to Izt (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject, "String") returns contents of Izt as text
% str2double(get(hObject, "String”)) returns contents of Izt as a double

% --- Executes during object creation, after setting all properties.
function lzt_CreateFcn(hObject, eventdata, handles)

% hObject handle to Izt (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
it ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor*®))
set(hObject, "BackgroundCollor”®, "white");
end

function Mxr_Callback(hObject, eventdata, handles)

% hObject handle to Mxr (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject, "String") returns contents of Mxr as text
% str2double(get(hObject, "String”)) returns contents of Mxr as a double

% --- Executes during object creation, after setting all properties.
function Mxr_CreateFcn(hObject, eventdata, handles)

% hObject handle to Mxr (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor*®))
set(hObject, "BackgroundCollor”®, "*white");
end

function Mzr_Callback(hObject, eventdata, handles)

% hObject handle to Mzr (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject, "String") returns contents of Mzr as text
% str2double(get(hObject, "String”)) returns contents of Mzr as a double

% --- Executes during object creation, after setting all properties.
function Mzr_CreateFcn(hObject, eventdata, handles)
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%
0
%

x

%
%

hObject handle to Mzr (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal(get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundColor®))

set(hObject, "BackgroundColor”, "white");

end

function Ixr_Callback(hObject, eventdata, handles)

%
%
%

hObject handle to Ixr (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

Hints: get(hObject, "String") returns contents of Ixr as text
str2double(get(hObject, "String")) returns contents of Ixr as a double

--— Executes during object creation, after setting all properties.

function Ixr_CreateFcn(hObject, eventdata, handles)

%

hObject handle to Ixr (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

iT ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor™))

set(hObject, "BackgroundColor®, "white®);

end

function lzr_Callback(hObject, eventdata, handles)

hObject handle to lzr (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

Hints: get(hObject, "String") returns contents of lzr as text
str2double(get(hObject, "String")) returns contents of lzr as a double

--— Executes during object creation, after setting all properties.

function lzr_CreateFcn(hObject, eventdata, handles)

%

hObject handle to lzr (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal(get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundColor™))

set(hObject, "BackgroundColor®, "white®);

end

function dzr_Callback(hObject, eventdata, handles)

%
%
%

%
%

%

hObject handle to dzr (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

Hints: get(hObject, "String®) returns contents of dzr as text
str2double(get(hObject, "String")) returns contents of dzr as a double

--— Executes during object creation, after setting all properties.

113



function dzr_CreateFcn(hObject, eventdata, handles)

%
%
%

%
%

hObject handle to dzr (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor*))

set(hObject, "BackgroundColor”®, "*white®);

end

function dxr_Callback(hObject, eventdata, handles)

%
%
%

%
%

%

hObject handle to dxr (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

Hints: get(hObject, "String") returns contents of dxr as text
str2double(get(hObject, "String”)) returns contents of dxr as a double

--— Executes during object creation, after setting all properties.

function dxr_CreateFcn(hObject, eventdata, handles)

%
%
%

%
%

hObject handle to dxr (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor*®))

set(hObject, "BackgroundCollor”®, "*white®);

end

function Nzr_Callback(hObject, eventdata, handles)

%
%
%

hObject handle to Nzr (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

Hints: get(hObject, "String") returns contents of Nzr as text
str2double(get(hObject, "String”)) returns contents of Nzr as a double

-—- Executes during object creation, after setting all properties.

function Nzr_CreateFcn(hObject, eventdata, handles)

%
%
%

%
%

hObject handle to Nzr (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor™))

set(hObject, "BackgroundCollor”®, "*white");

end

function Nxr_Callback(hObject, eventdata, handles)

%
%
%

%
%

hObject handle to Nxr (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

Hints: get(hObject, "String") returns contents of Nxr as text
str2double(get(hObject, "String”)) returns contents of Nxr as a double
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%

--— Executes during object creation, after setting all properties.

function Nxr_CreateFcn(hObject, eventdata, handles)

%
%
%

%
%

hObject handle to Nxr (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

iT ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor*))

set(hObject, "BackgroundColor”, "white");

end

%

--- Executes on slider movement.

function thetas_slider_Callback(hObject, eventdata, handles)

%
%
%

hObject handle to thetas_slider (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

Hints: get(hObject, "Value®) returns position of slider
get(hObject, "Min®) and get(hObject, "Max") to determine range of slider

--— Executes on selection change in rx_xdist.

function rx_xdist_Callback(hObject, eventdata, handles)

%
%
%

%

hObject handle to rx_xdist (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

Hints: contents = cellstr(get(hObject, "String")) returns rx_xdist contents as

cell array

%

%

contents{get(hObject, "Value®)} returns selected item from rx_xdist

--— Executes during object creation, after setting all properties.

function rx_xdist_CreateFcn(hObject, eventdata, handles)

%
%
%

%
%

hObject handle to rx_xdist (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

Hint: popupmenu controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor*))

set(hObject, "BackgroundCollor®, "*white®);

end

%

--— Executes on selection change in rx_peddbx.

function rx_peddbx_Callback(hObject, eventdata, handles)

%
%
%

%

hObject handle to rx_peddbx (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

Hints: contents = cellstr(get(hObject, "String")) returns rx_peddbx contents

as cell array

%

%

contents{get(hObject, "Value")} returns selected item from rx_peddbx

--— Executes during object creation, after setting all properties.

function rx_peddbx_CreateFcn(hObject, eventdata, handles)

%
%
%

%

hObject handle to rx_peddbx (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

Hint: popupmenu controls usually have a white background on Windows.
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% See ISPC and COMPUTER.

if ispc && isequal(get(hObject, "BackgroundColor™),

get(0, "defaultUicontrolBackgroundColor*®))
set(hObject, "BackgroundCollor”®, "*white");

end

% --- Executes on selection change in rx_nexpx.

function rx_nexpx_Callback(hObject, eventdata, handles)

% hObject handle to rx_nexpx (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject, "String")) returns rx_nexpx contents as
cell array
% contents{get(hObject, "Value®)} returns selected item from rx_nexpx

% --- Executes during object creation, after setting all properties.
function rx_nexpx_CreateFcn(hObject, eventdata, handles)

% hObject handle to rx_nexpx (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject, "BackgroundColor®),
get(0, "defaultUicontrolBackgroundColor*®))
set(hObject, "BackgroundCollor”®, "*white");
end

% --- Executes on selection change in rx_zdist.

function rx_zdist_Callback(hObject, eventdata, handles)

% hObject handle to rx_zdist (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject, "String")) returns rx_zdist contents as
cell array
% contents{get(hObject, "Value®)} returns selected item from rx_zdist

% --- Executes during object creation, after setting all properties.
function rx_zdist_CreateFcn(hObject, eventdata, handles)

% hObject handle to rx_zdist (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor*®))
set(hObject, "BackgroundCollor”®, "*white");
end

% --- Executes on selection change in rx_peddbz.

function rx_peddbz_Callback(hObject, eventdata, handles)

% hObject handle to rx_peddbz (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject, "String®)) returns rx_peddbz contents

as cell array
% contents{get(hObject, "Value®)} returns selected item from rx_peddbz
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% --- Executes during object creation, after setting all properties.
function rx_peddbz_CreateFcn(hObject, eventdata, handles)

% hObject handle to rx_peddbz (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
iT ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor*))
set(hObject, "BackgroundColor”, "white");
end

% --- Executes on selection change in rx_nexpz.

function rx_nexpz_Callback(hObject, eventdata, handles)

% hObject handle to rx_nexpz (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject, "String")) returns rx_nexpz contents as
cell array
% contents{get(hObject, "Value®)} returns selected item from rx_nexpz

% --- Executes during object creation, after setting all properties.
function rx_nexpz_CreateFcn(hObject, eventdata, handles)

% hObject handle to rx_nexpz (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
iT ispc && isequal(get(hObject, "BackgroundColor™),
get(0, "defaultUicontrolBackgroundColor™))
set(hObject, "BackgroundColor”, "white");
end
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